Online Recognition of Small Vegetable Seed Sowing Based on Machine Vision

播种 大津法 播种 人工智能 计算机科学 图像分割 分割 图像处理 计算机视觉 模式识别(心理学) 算法 图像(数学) 工程类 农学 生物 航空航天工程
作者
Weipeng Zhang,Bo Zhao,Shengbo Gao,Yuxi Ji,Liming Zhou,Kang Niu,Zhaomei Qiu,Xin Jin
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 134331-134339 被引量:6
标识
DOI:10.1109/access.2023.3336944
摘要

The lightweight, small diameter, and irregular shape of small vegetable seeds create difficulties for online monitoring of sowing quality. We propose a machine vision-based online monitoring method with a sowing test bench designed to address the challenges. Vision devices and image processing systems are employed to detect the quality of seed sowing. Firstly, the seed segmentation image is obtained by completing the steps of median filtering, graying and image segmentation.We then implement the Circumscribed circle method to detect the position of the seed. Afterward, the coordinate system is converted using calibrated results to eliminate non-seed impurities. Finally, we count the number of identified seeds to evaluate the recognition accuracy. The trial compared three algorithms: the image segmentation algorithm OTSU, the critical point localization algorithm SIFT, and the algorithm designed in the experiment. The algorithm we designed outperformed the others regarding recognition accuracy and processing time. The experimental method employed in the study encompasses various functionalities, including seeding counting, understanding detection, replaying, and monitoring deviations from seed bands during sowing. Cabbage seeds (1.50mm-2.00mm), tomato seeds (1.00mm-1.50mm), and radish seeds (0.50mm-1.00mm) were selected as the experimental subjects due to the uniform particle size distribution. The results demonstrate that the relative error between the online image recognition algorithm and the system's seeding rate monitoring is below 3.0%. Moreover, the accuracy of missed seeding monitoring is 92.5%, while the accuracy of deviation monitoring during seeding is 92.0%. We observed that the image recognition algorithm employed in the system achieved a processing time of 0.29 seconds, with a seed band recognition rate of 96.8%, fulfilling the monitoring requirements for small seed sowing experiments. The processed images and collected data are presented in real-time on the upper computer terminal. This study significantly contributes to the advancement of small-grain vegetable seed sowing monitoring technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助言十四采纳,获得10
1秒前
Lucas应助牧童采纳,获得10
2秒前
完美世界应助学术蝗虫采纳,获得10
4秒前
研友_LB1rk8完成签到,获得积分10
5秒前
星辰大海应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
冰魂应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
君儿和闪电完成签到 ,获得积分10
7秒前
科研通AI5应助xiaozhao采纳,获得30
7秒前
余味应助小周碎碎念采纳,获得10
8秒前
13秒前
13秒前
NexusExplorer应助Two-Capitals采纳,获得10
14秒前
学术蝗虫发布了新的文献求助10
18秒前
Hello应助靖哥哥采纳,获得10
18秒前
牧童发布了新的文献求助10
19秒前
洛尘完成签到,获得积分10
20秒前
马彦杰完成签到,获得积分10
20秒前
22秒前
自信的九娘完成签到,获得积分10
23秒前
25秒前
X519664508完成签到,获得积分0
25秒前
雪花发布了新的文献求助80
27秒前
可爱的函函应助调皮从云采纳,获得10
27秒前
LL666完成签到 ,获得积分10
27秒前
蛋堡完成签到 ,获得积分10
28秒前
zimo完成签到,获得积分10
30秒前
靖哥哥发布了新的文献求助10
30秒前
30秒前
33秒前
车宇完成签到 ,获得积分10
33秒前
星辰大海应助lvshiwen采纳,获得10
33秒前
若冰完成签到,获得积分10
35秒前
小屁孩完成签到,获得积分10
35秒前
36秒前
流口水完成签到,获得积分10
36秒前
圆圆完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779389
求助须知:如何正确求助?哪些是违规求助? 3324920
关于积分的说明 10220490
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522