Graph Reinforcement Learning for Multi-Aircraft Conflict Resolution

强化学习 冲突解决 钢筋 图形 计算机科学 分辨率(逻辑) 人工智能 工程类 结构工程 理论计算机科学 政治学 法学
作者
Yumeng Li,Yunhe Zhang,Tong Guo,Yu Liu,Yisheng Lv,Wenbo Du
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tiv.2024.3364652
摘要

The escalating density of airspace has led to sharply increased conflicts between aircraft. Efficient and scalable conflict resolution methods are crucial to mitigate collision risks. Existing learning-based methods become less effective as the scale of aircraft increases due to their redundant information representations. In this paper, to accommodate the increased airspace density, a novel graph reinforcement learning (GRL) method is presented to efficiently learn deconfliction strategies. A time-evolving conflict graph is exploited to represent the local state of individual aircraft and the global spatiotemporal relationships between them. Equipped with the conflict graph, GRL can efficiently learn deconfliction strategies by selectively aggregating aircraft state information through a multi-head attention-boosted graph neural network. Furthermore, a temporal regularization mechanism is proposed to enhance learning stability in highly dynamic environments. Comprehensive experimental studies have been conducted on an OpenAI Gym-based flight simulator. Compared with the existing state-of-the-art learning-based methods, the results demonstrate that GRL can save much training time while achieving significantly better deconfliction strategies in terms of safety and efficiency metrics. In addition, GRL has a strong power of scalability and robustness with increasing aircraft scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕若涵冰完成签到,获得积分10
2秒前
温暖凡灵完成签到,获得积分10
3秒前
Diego完成签到,获得积分10
6秒前
6秒前
meng发布了新的文献求助10
7秒前
iNk应助sanyecai采纳,获得10
8秒前
8秒前
寄明月发布了新的文献求助10
8秒前
xww完成签到,获得积分10
9秒前
fengliurencai完成签到,获得积分10
10秒前
毕老师的光电科研关注了科研通微信公众号
11秒前
科研达人发布了新的文献求助10
12秒前
大模型应助猩心采纳,获得10
14秒前
快飞飞完成签到 ,获得积分10
14秒前
可爱的函函应助柯林采纳,获得10
15秒前
blueguys发布了新的文献求助10
15秒前
Bruial完成签到,获得积分10
17秒前
19秒前
20秒前
meng完成签到,获得积分10
21秒前
luqong发布了新的文献求助10
23秒前
王哪跑12完成签到,获得积分10
24秒前
24秒前
杜青完成签到,获得积分10
25秒前
猩心发布了新的文献求助10
26秒前
26秒前
柯林发布了新的文献求助10
27秒前
27秒前
chen完成签到,获得积分10
28秒前
31秒前
sanyecai发布了新的文献求助10
31秒前
雷仪清完成签到 ,获得积分10
32秒前
勤恳马里奥应助耍酷的汲采纳,获得10
32秒前
研友_RLNzvL发布了新的文献求助10
32秒前
善学以致用应助不安忆寒采纳,获得10
33秒前
夜曲发布了新的文献求助10
35秒前
所所应助欣喜机器猫采纳,获得10
35秒前
35秒前
35秒前
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783844
求助须知:如何正确求助?哪些是违规求助? 3329096
关于积分的说明 10239905
捐赠科研通 3044513
什么是DOI,文献DOI怎么找? 1671069
邀请新用户注册赠送积分活动 800142
科研通“疑难数据库(出版商)”最低求助积分说明 759192