DATA COLLECTION AND PERFORMANCE EVALUATION OF RUNNING TRAINING SPORT USING DIFFERENT NEURAL NETWORK TECHNIQUES

步伐 人工神经网络 计算机科学 循环神经网络 机器学习 跨步 节奏 人工智能 试验数据 工程类 计算机安全 大地测量学 电子工程 程序设计语言 地理
作者
CAIRU YANG,Yu-Teng Chang
出处
期刊:Journal of Mechanics in Medicine and Biology [World Scientific]
卷期号:23 (04) 被引量:4
标识
DOI:10.1142/s0219519423400535
摘要

With the increasing engagement of human beings in the pursuit of healthcare, running as a sport has become a fashionable and healthcare first choice. This research uses artificial intelligence technology to carry out intelligent analysis when conducting running training. Artificial intelligence technology can accurately analyze and predict the application requirements of sports training postures. We proposed an analysis of sports posture and a prediction system, which uses running training data in the form of a heart rate, recorded on a GPS smart sports watch, as well as using the recurrent neural network (RNN), long and short-term memory (LSTM) and the gate recursive unit (GRU). These three types of neural network methods can predict which method is best suited for a road race and can confirm that it will be completed within the scheduled finish time; these models will also perform an intelligent analysis of physical fitness (heart rate, pace) and running technology (cadence, pace). The training and test data are collected from the running training records (running distance, time, heart rate, stride frequency, stride length, pace, calories, altitude and other characteristic values) as input parameters, to test and compare the running completion time trends of the RNN, LSTM and GRU neural network methods in the exercise table, so as to evaluate their predictive abilities. The results show that the GRU method has the best predictive accuracy, and the least accurate is the LSTM method. After the hidden layers are added to the three predictive methods, the RNN is slightly regressive, the LSTM indicates a trend of significant improvement and the GRU exhibits less obvious changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助雨下采纳,获得10
2秒前
小超人完成签到 ,获得积分10
3秒前
3秒前
blue完成签到 ,获得积分10
3秒前
5秒前
7秒前
9秒前
FashionBoy应助寒冷晓凡采纳,获得10
10秒前
活着完成签到,获得积分10
11秒前
也许飞鸟能到那个木屋完成签到,获得积分10
11秒前
仪小彤发布了新的文献求助30
13秒前
美好雁荷发布了新的文献求助10
14秒前
15秒前
16秒前
李健应助MaYue采纳,获得10
16秒前
YMY完成签到,获得积分10
16秒前
16秒前
Zephyr完成签到,获得积分10
17秒前
枯夏完成签到 ,获得积分10
20秒前
执着的忆雪完成签到 ,获得积分10
20秒前
执着乐双完成签到,获得积分10
21秒前
雨下发布了新的文献求助10
21秒前
Dogged完成签到 ,获得积分10
21秒前
复杂飞飞发布了新的文献求助10
22秒前
美好雁荷完成签到,获得积分10
23秒前
达达完成签到,获得积分10
23秒前
23秒前
immortal发布了新的文献求助10
24秒前
乐正亦寒完成签到 ,获得积分10
26秒前
Minguk完成签到,获得积分10
27秒前
longh完成签到,获得积分10
29秒前
跳不起来的大神完成签到 ,获得积分10
29秒前
MaYue发布了新的文献求助10
29秒前
zhusealin完成签到 ,获得积分10
30秒前
吕宝宝发布了新的文献求助50
31秒前
32秒前
JiegeSCI完成签到,获得积分10
32秒前
xdy1990发布了新的文献求助10
37秒前
40秒前
lorenzo5zz发布了新的文献求助10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214323
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667567
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304