Molecular recognition triggered aptazyme cascade for ultrasensitive detection of exosomes in clinical serum samples

外体 检出限 荧光团 微泡 化学 荧光 生物物理学 分子生物学 色谱法 纳米技术 小RNA 生物 材料科学 生物化学 基因 物理 量子力学
作者
Kemei Jiang,Yanan Wu,Juan Chen,Mingqing Shi,Hong‐Min Meng,Zhaohui Li
出处
期刊:Chinese Chemical Letters [Elsevier BV]
卷期号:32 (5): 1827-1830 被引量:27
标识
DOI:10.1016/j.cclet.2020.11.031
摘要

Exosomes have attracted widespread interest due to their inherent advantages in tumor diagnosis and treatment monitoring. However, it is still a big challenge for highly sensitive and specific detection of exosome in real complexed samples. Herein, a molecular recognition triggered aptazyme cascade strategy was developed for ultrasensitive detection of cancer exosomes in clinical serum samples. In this design, one target exosome could capture a large quantity of aptazymes for the first-step signal amplification. And then the captured aptazyme was activated and recycled to release the fluorophore-labelled substrate strand for a cascaded signal amplification. Notably, the activation of aptazyme only occurs when it has bound with target exosome, ensuring a low background. The experimental results show that the limit of detection (LOD) and the limit of quantification (LOQ) are 3.5 × 103 particles/μL and 1.7 × 104 particles/μL, respectively, which is comparable to the results of most existed fluorescence-based exosome probes. Moreover, this assay possesses high specificity to distinguish exosomes derived from other cell lines. Furthermore, this fluorescence probe was utilized in cancer patient and healthy serum samples successfully, suggesting its great potential for clinical diagnosis and biological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助科研通管家采纳,获得10
刚刚
科研通AI2S应助奕火采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得30
刚刚
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
妖精发布了新的文献求助10
1秒前
WanPeng发布了新的文献求助10
2秒前
科研通AI5应助snowy_owl采纳,获得10
2秒前
Dobrzs完成签到,获得积分10
3秒前
dirk发布了新的文献求助10
3秒前
AA发布了新的文献求助10
3秒前
英姑应助nenoaowu采纳,获得10
3秒前
3秒前
4秒前
繁花发布了新的文献求助10
4秒前
chenwl完成签到,获得积分10
5秒前
5秒前
5秒前
残幻应助由雨柏采纳,获得10
5秒前
NexusExplorer应助打老虎采纳,获得30
7秒前
遇楹完成签到 ,获得积分10
7秒前
聪明盈发布了新的文献求助10
8秒前
完美世界应助silong采纳,获得10
9秒前
chenwl发布了新的文献求助10
9秒前
慢慢的地理人完成签到,获得积分10
10秒前
11秒前
陈一一完成签到,获得积分10
11秒前
11秒前
洁净艳一发布了新的文献求助10
11秒前
自然秋柳完成签到 ,获得积分10
13秒前
14秒前
15秒前
天天快乐应助alexyang采纳,获得10
15秒前
星渊完成签到,获得积分10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Translation and the Rediscovery of Rhetoric 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
【求助文献,并非书籍】Perovskite solar cells 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836985
求助须知:如何正确求助?哪些是违规求助? 3379213
关于积分的说明 10507996
捐赠科研通 3099037
什么是DOI,文献DOI怎么找? 1706692
邀请新用户注册赠送积分活动 821205
科研通“疑难数据库(出版商)”最低求助积分说明 772472