Hierarchical control of soft manipulators towards unstructured interactions

计算机科学 透视图(图形) 分级控制系统 机器人 运动(物理) 雅可比矩阵与行列式 软机器人 控制理论(社会学) 控制系统 运动控制 机械臂 控制工程 控制(管理) 人工智能 控制器(灌溉) 工程类 生物 数学 电气工程 应用数学 农学
作者
Hao Jiang,Zhanchi Wang,Yusong Jin,Xiaotong Chen,Peijin Li,Yinghao Gan,Sen Lin,Xiaoping Chen
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:40 (1): 411-434 被引量:100
标识
DOI:10.1177/0278364920979367
摘要

Performing daily interaction tasks such as opening doors and pulling drawers in unstructured environments is a challenging problem for robots. The emergence of soft-bodied robots brings a new perspective to solving this problem. In this paper, inspired by humans performing interaction tasks through simple behaviors, we propose a hierarchical control system for soft arms, in which the low-level controller achieves motion control of the arm tip, the high-level controller controls the behaviors of the arm based on the low-level controller, and the top-level planner chooses what behaviors should be taken according to tasks. To realize the motion control of the soft arm in interacting with environments, we propose two control methods. The first is a feedback control method based on a simplified Jacobian model utilizing the motion laws of the soft arm that are not affected by environments during interaction. The second is a control method based on [Formula: see text]-learning, in which we present a novel method to increase training data by setting virtual goals. We implement the hierarchical control system on a platform with the Honeycomb Pneumatic Networks Arm (HPN Arm) and validate the effectiveness of this system on a series of typical daily interaction tasks, which demonstrates this proposed hierarchical control system could render the soft arms to perform interaction tasks as simply as humans, without force sensors or accurate models of the environments. This work provides a new direction for the application of soft-bodied arms and offers a new perspective for the physical interactions between robots and environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lihuahui完成签到,获得积分20
刚刚
细腻天蓝完成签到,获得积分10
刚刚
鸣笛应助务实水蓝采纳,获得20
1秒前
有魅力强炫完成签到,获得积分10
1秒前
aaaaaa发布了新的文献求助10
3秒前
origin发布了新的文献求助10
4秒前
天桥下得小路完成签到,获得积分10
4秒前
5秒前
xiaoxiang_1001完成签到,获得积分10
6秒前
核桃应助Javari采纳,获得10
10秒前
SONGYILIU完成签到,获得积分20
10秒前
12秒前
12秒前
NexusExplorer应助lihuahui采纳,获得10
13秒前
14秒前
隐形曼青应助芸珂采纳,获得30
14秒前
顾矜应助戚薇采纳,获得10
15秒前
16秒前
16秒前
xunl发布了新的文献求助10
16秒前
田様应助sunny采纳,获得10
17秒前
临诗完成签到,获得积分10
17秒前
18秒前
amour发布了新的文献求助10
18秒前
烟花应助小颜采纳,获得10
18秒前
orixero应助弓長玉王令采纳,获得10
20秒前
Rita发布了新的文献求助10
21秒前
origin发布了新的文献求助10
22秒前
AA完成签到,获得积分10
23秒前
Hello应助hhxx采纳,获得10
23秒前
23秒前
23秒前
机智尔柳完成签到,获得积分10
24秒前
24秒前
winux007发布了新的文献求助10
26秒前
上官若男应助欢呼的初彤采纳,获得10
27秒前
xrl完成签到,获得积分10
28秒前
刘豆豆发布了新的文献求助10
29秒前
xue完成签到,获得积分10
29秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915612
求助须知:如何正确求助?哪些是违规求助? 3461081
关于积分的说明 10915414
捐赠科研通 3187991
什么是DOI,文献DOI怎么找? 1762213
邀请新用户注册赠送积分活动 852684
科研通“疑难数据库(出版商)”最低求助积分说明 793530