Combined Catalysis for Engineering Bioinspired, Lignin-Based, Long-Lasting, Adhesive, Self-Mending, Antimicrobial Hydrogels

自愈水凝胶 纳米技术 环境友好型 催化作用 生物相容性 材料科学 氧化还原 化学 木质素 儿茶酚 绿色化学 组合化学 有机化学 反应机理 生态学 生物
作者
Samson Afewerki,Xichi Wang,Guillermo U. Ruiz‐Esparza,Cheuk‐Wai Tai,Xueying Kong,Shengyang Zhou,Ken Welch,Ping Huang,Rhodel Bengtsson,Chao Xu,Maria Strømme
出处
期刊:ACS Nano [American Chemical Society]
卷期号:14 (12): 17004-17017 被引量:171
标识
DOI:10.1021/acsnano.0c06346
摘要

The engineering of multifunctional biomaterials using a facile sustainable methodology that follows the principles of green chemistry is still largely unexplored but would be very beneficial to the world. Here, the employment of catalytic reactions in combination with biomass-derived starting materials in the design of biomaterials would promote the development of eco-friendly technologies and sustainable materials. Herein, we disclose the combination of two catalytic cycles (combined catalysis) comprising oxidative decarboxylation and quinone-catechol redox catalysis for engineering lignin-based multifunctional antimicrobial hydrogels. The bioinspired design mimics the catechol chemistry employed by marine mussels in nature. The resultant multifunctional sustainable hydrogels (1) are robust and elastic, (2) have strong antimicrobial activity, (3) are adhesive to skin tissue and various other surfaces, and (4) are able to self-mend. A systematic characterization was carried out to fully elucidate and understand the facile and efficient catalytic strategy and the subsequent multifunctional materials. Electron paramagnetic resonance analysis confirmed the long-lasting quinone-catechol redox environment within the hydrogel system. Initial in vitro biocompatibility studies demonstrated the low toxicity of the hydrogels. This proof-of-concept strategy could be developed into an important technological platform for the eco-friendly, bioinspired design of other multifunctional hydrogels and their use in various biomedical and flexible electronic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
友芸完成签到 ,获得积分10
1秒前
1秒前
孟孟发布了新的文献求助10
1秒前
尾巴发布了新的文献求助10
2秒前
梅花发布了新的文献求助10
3秒前
3秒前
3秒前
恨海情天完成签到,获得积分10
4秒前
Sun完成签到,获得积分10
5秒前
落雪发布了新的文献求助20
5秒前
Jasmych完成签到,获得积分10
5秒前
蜜桃乌龙茶完成签到,获得积分10
7秒前
7秒前
踏实水池应助科研通管家采纳,获得20
8秒前
喵典娜完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
Tourist应助科研通管家采纳,获得150
8秒前
新年快乐完成签到,获得积分10
8秒前
tuanheqi应助科研通管家采纳,获得150
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得20
8秒前
LaTeXer应助科研通管家采纳,获得150
8秒前
深情安青应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
ne完成签到 ,获得积分10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
范雅寒发布了新的文献求助10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
9秒前
腼腆的半莲完成签到,获得积分10
9秒前
9秒前
asdlxz发布了新的文献求助10
11秒前
11秒前
冷静尔芙完成签到,获得积分10
12秒前
zj3tears发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082371
求助须知:如何正确求助?哪些是违规求助? 4299730
关于积分的说明 13396998
捐赠科研通 4123608
什么是DOI,文献DOI怎么找? 2258463
邀请新用户注册赠送积分活动 1262720
关于科研通互助平台的介绍 1196681