Radiomics analysis of [18F]FDG PET/CT for microvascular invasion and prognosis prediction in very-early- and early-stage hepatocellular carcinoma

列线图 医学 无线电技术 肝细胞癌 队列 放射科 回顾性队列研究 阶段(地层学) 核医学 内科学 肿瘤科 生物 古生物学
作者
Youcai Li,Yin Zhang,Qi Fang,Xiaoyao Zhang,Peng Hou,Hubing Wu,Xinlu Wang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:48 (8): 2599-2614 被引量:102
标识
DOI:10.1007/s00259-020-05119-9
摘要

As a reliable preoperative predictor for microvascular invasion (MVI) and disease-free survival (DFS) is lacking, we developed a radiomics nomogram of [18F]FDG PET/CT to predict MVI status and DFS in patients with very-early- and early-stage (BCLC 0, BCLC A) hepatocellular carcinoma (HCC). Patients (N = 80) with BCLC0-A HCC who underwent [18F]FDG PET/CT before surgery were enrolled in this retrospective study and were randomized to a training cohort and a validation cohort. Texture features from patients obtained using Lifex software in the training cohort were subjected to LASSO regression to select the most useful predictive features of MVI and DFS. Then, the radiomics nomogram was constructed using the radiomics signature and clinical features and further validated. To predict MVI, the [18F]FDG PET/CT radiomics signature consisted of five texture features from the PET and six texture features from CT. The signature was significantly associated with MVI status in the training cohort (P = 0.001). None of the clinical features was independent predictors for MVI status (P > 0.05). The area under the curve value of the M-PET/CT model was 0.891 (95% CI: 0.799–0.984) in the training cohort and showed good discrimination and calibration. To predict DFS, the [18F]FDG PET/CT radiomics nomogram (D-PET/CT model) and a clinicopathologic nomogram were built in the training cohort. The D-PET/CT model, which integrated the D-PET/CT radiomics signature with INR and TB, provided better predictive performance (C-index: 0.831, 95% CI: 0.761–0.900) and larger net benefits than the simple clinical model, as determined by decision curve analyses. The newly developed [18F]FDG PET/CT radiomics signature was an independent biomarker for the estimation of MVI and DFS in patients with very-early- and early-stage HCC. Moreover, PET/CT nomogram, which incorporated the radiomics signature of [18F]FDG PET/CT and clinical risk factors in patients with very-early- and early-stage HCC, performed better for individualized DFS estimation, which might enable a step forward in precise medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助曾健采纳,获得10
刚刚
刚刚
1秒前
1秒前
roosterstorm发布了新的文献求助10
3秒前
小二郎应助巷子里的喵采纳,获得10
4秒前
英俊的铭应助遇见采纳,获得10
5秒前
Ava应助独特凌萱采纳,获得10
5秒前
677完成签到,获得积分10
6秒前
小马甲应助义气的妙松采纳,获得10
6秒前
黎明深雪发布了新的文献求助10
6秒前
昏睡的山柳完成签到 ,获得积分10
7秒前
7秒前
ZhangDaying完成签到 ,获得积分10
8秒前
9秒前
搜集达人应助xiaohei采纳,获得10
10秒前
曾健完成签到,获得积分20
10秒前
honey发布了新的文献求助10
10秒前
彭于晏应助欣慰的觅儿采纳,获得10
11秒前
lwl发布了新的文献求助10
12秒前
15秒前
风清扬应助suuu采纳,获得30
16秒前
舒心小海豚完成签到,获得积分10
16秒前
7zip发布了新的文献求助10
16秒前
17秒前
二十四桥明月夜完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
19秒前
19秒前
19秒前
19秒前
honey完成签到,获得积分20
19秒前
20秒前
曾健发布了新的文献求助10
20秒前
遇见发布了新的文献求助10
21秒前
22秒前
络噬元兽完成签到 ,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061902
求助须知:如何正确求助?哪些是违规求助? 4285844
关于积分的说明 13355704
捐赠科研通 4103720
什么是DOI,文献DOI怎么找? 2246915
邀请新用户注册赠送积分活动 1252595
关于科研通互助平台的介绍 1183502