Robust adaptive beamforming based on a method for steering vector estimation and interference covariance matrix reconstruction

计算机科学 协方差 波束赋形 估计员 稳健性(进化) 基质(化学分析) 控制理论(社会学)
作者
Sicong Sun,Zhongfu Ye
出处
期刊:Signal Processing [Elsevier BV]
卷期号:182: 107939- 被引量:6
标识
DOI:10.1016/j.sigpro.2020.107939
摘要

Abstract Robustness is an important factor in adaptive beamforming because various mismatches that exist in reality will lead to considerable performance degradation. In this paper, a robust adaptive beamforming (RAB) algorithm is proposed based on a novel method for estimating the steering vectors (SVs). The interference-plus-noise covariance matrix (INCM) is then reconstructed by the SVs and their corresponding power estimates. As we know, the Capon power spectrum is actually a function of the SV defined in a high-dimensional domain, in which the actual SVs correspond to the highest peaks. The nominal SVs may lead to relatively lower power amplitude points around the peaks when mismatches exist, and these peaks are located in the directions of gradient vectors at the lower power points obtained by the nominal SVs. Therefore, to obtain the actual SVs, we first construct a subspace for each nominal SV in a small neighborhood of angles. Then we get the gradient vector, which is orthogonal to the corresponding nominal SV neighborhood, using a subspace-based method. Finally, we search along the gradient vector to obtain the adjusted SV that generates the highest Capon power amplitude. The interference covariance matrix (ICM) is reconstructed by the adjusted interference SVs and corresponding Capon power amplitudes. The actual SV of the signal of interest (SOI) is estimated as the adjusted SV of the SOI. Simulation results demonstrate that the proposed method is robust against various types of mismatch and is superior to other existing reconstruction-based beamforming algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
乐乐应助lulu采纳,获得50
1秒前
saberLee完成签到,获得积分10
2秒前
丹丹子完成签到 ,获得积分10
3秒前
科研通AI5应助AAA采纳,获得10
5秒前
6秒前
jeanking发布了新的文献求助10
7秒前
kingking完成签到,获得积分10
7秒前
10秒前
爆米花应助好的采纳,获得10
10秒前
烟花应助英俊白莲采纳,获得10
12秒前
13秒前
dfgdf发布了新的文献求助10
15秒前
11完成签到 ,获得积分10
16秒前
16秒前
16秒前
pure123完成签到 ,获得积分10
18秒前
19秒前
aokou发布了新的文献求助10
19秒前
niu完成签到,获得积分10
20秒前
樱桃小热巴完成签到 ,获得积分20
20秒前
dm11完成签到,获得积分10
20秒前
CipherSage应助月月采纳,获得10
21秒前
21秒前
鲜艳的新梅完成签到,获得积分10
22秒前
cwq完成签到 ,获得积分10
23秒前
23秒前
24秒前
勤奋花瓣发布了新的文献求助10
25秒前
CodeCraft应助dfgdf采纳,获得10
25秒前
李健的小迷弟应助SHI采纳,获得10
25秒前
好的发布了新的文献求助10
25秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
cdercder应助科研通管家采纳,获得10
26秒前
彭于晏应助科研通管家采纳,获得10
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
smile完成签到,获得积分10
26秒前
26秒前
Akim应助科研通管家采纳,获得10
26秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825529
求助须知:如何正确求助?哪些是违规求助? 3367695
关于积分的说明 10447594
捐赠科研通 3087097
什么是DOI,文献DOI怎么找? 1698441
邀请新用户注册赠送积分活动 816796
科研通“疑难数据库(出版商)”最低求助积分说明 769959