已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting Drug-Target Affinity Based on Recurrent Neural Networks and Graph Convolutional Neural Networks

计算机科学 药物靶点 人工神经网络 人工智能 药品 卷积神经网络 药物发现 药物开发 化学空间 特征(语言学) 二元分类 机器学习 特征向量 模式识别(心理学) 图形 支持向量机 生物信息学 医学 理论计算机科学 药理学 生物 哲学 语言学
作者
Qingyu Tian,Mao Ding,Hui Yang,Caibin Yue,Yue Zhong,Zhenzhen Du,Dayan Liu,Jiali Liu,Yufeng Deng
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:25 (4): 634-641 被引量:12
标识
DOI:10.2174/1386207324666210215101825
摘要

Background: Drug development requires a lot of money and time, and the outcome of the challenge is unknown. So, there is an urgent need for researchers to find a new approach that can reduce costs. Therefore, the identification of drug-target interactions (DTIs) has been a critical step in the early stages of drug discovery. These computational methods aim to narrow the search space for novel DTIs and to elucidate the functional background of drugs. Most of the methods developed so far use binary classification to predict the presence or absence of interactions between the drug and the target. However, it is more informative, but also more challenging, to predict the strength of the binding between a drug and its target. If the strength is not strong enough, such a DTI may not be useful. Hence, the development of methods to predict drug-target affinity (DTA) is of significant importance. Method: We have improved the Graph DTA model from a dual-channel model to a triple-channel model. We interpreted the target/protein sequences as time series and extracted their features using the LSTM network. For the drug, we considered both the molecular structure and the local chemical background, retaining the four variant networks used in Graph DTA to extract the topological features of the drug and capturing the local chemical background of the atoms in the drug by using BiGRU. Thus, we obtained the latent features of the target and two latent features of the drug. The connection of these three feature vectors is then input into a 2-layer FC network, and a valuable binding affinity is output. Result: We use the Davis and Kiba datasets, using 80% of the data for training and 20% of the data for validation. Our model shows better performance by comparing it with the experimental results of Graph DTA. Conclusion: In this paper, we altered the Graph DTA model to predict drug-target affinity. It represents the drug as a graph, and extracts the two-dimensional drug information using a graph convolutional neural network. Simultaneously, the drug and protein targets are represented as a word vector, and the convolutional neural network is used to extract the time series information of the drug and the target. We demonstrate that our improved method has better performance than the original method. In particular, our model has better performance in the evaluation of benchmark databases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ding应助五博采纳,获得10
2秒前
科研通AI5应助休息日采纳,获得10
3秒前
shane发布了新的文献求助10
3秒前
5秒前
6秒前
郴欧尼完成签到 ,获得积分10
7秒前
HUU发布了新的文献求助30
7秒前
蟹蟹发布了新的文献求助10
9秒前
10秒前
holly发布了新的文献求助10
10秒前
醒醒发布了新的文献求助10
10秒前
12秒前
爆米花应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
yydragen应助科研通管家采纳,获得30
15秒前
若雨凌风应助科研通管家采纳,获得200
15秒前
coolkid应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
勤奋尔丝完成签到 ,获得积分10
18秒前
9℃完成签到 ,获得积分10
18秒前
瓦达伟大发布了新的文献求助10
19秒前
持卿应助清爽胡萝卜采纳,获得10
22秒前
懒得可爱发布了新的文献求助10
22秒前
NexusExplorer应助窝窝头采纳,获得10
23秒前
fang完成签到 ,获得积分10
25秒前
顾矜应助心中的日月采纳,获得10
25秒前
盼盼完成签到 ,获得积分10
25秒前
26秒前
26秒前
feifei完成签到,获得积分10
27秒前
xu完成签到,获得积分10
29秒前
30秒前
holly发布了新的文献求助10
31秒前
31秒前
明理的天抒完成签到 ,获得积分10
31秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845361
求助须知:如何正确求助?哪些是违规求助? 3387578
关于积分的说明 10550072
捐赠科研通 3108321
什么是DOI,文献DOI怎么找? 1712538
邀请新用户注册赠送积分活动 824461
科研通“疑难数据库(出版商)”最低求助积分说明 774807