脑电图
光谱密度
节奏
β节律
三角洲节奏
光谱分析
阿尔法(金融)
熵(时间箭头)
阿尔法节律
BETA(编程语言)
光谱分析
模式识别(心理学)
数学
人工智能
心理学
物理
计算机科学
神经科学
统计
声学
结构效度
量子力学
光谱学
天体物理学
程序设计语言
心理测量学
作者
Li Wang,Lingmei Ai,Siwang Wang,Wanzhi Lwo,Wanzhi Luo
出处
期刊:PubMed
日期:2012-08-01
卷期号:29 (4): 629-33
被引量:2
摘要
With extracting separately delta, theta, alpha and beta rhythms of electroencephalogram (EEG), we studied the characters of EEG for fatigued drivers by analyzing relative power spectrum, power spectral entropy and brain electrical activity mapping. The experimental results showed that with the average relative power spectrum in delta and theta rhythms of EEG increasing, the average relative power spectrum in alpha and beta rhythms decreased, while the average relative power spectrum in delta, theta and alpha rhythms increased in deep fatigue. The average power spectral entropy of EEG decreases with the increasing fatigue level. The average relative power spectrum and the average power spectral entropy of EEG could be expected to serve as the index for detecting fatigue level of drivers.
科研通智能强力驱动
Strongly Powered by AbleSci AI