PHANOTATE: a novel approach to gene identification in phage genomes

基因组 GenBank公司 基因 生物 计算生物学 遗传学 基因预测
作者
Katelyn McNair,Carol Zhou,Elizabeth A. Dinsdale,Brian Souza,Robert A. Edwards
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:35 (22): 4537-4542 被引量:278
标识
DOI:10.1093/bioinformatics/btz265
摘要

Abstract Motivation Currently there are no tools specifically designed for annotating genes in phages. Several tools are available that have been adapted to run on phage genomes, but due to their underlying design, they are unable to capture the full complexity of phage genomes. Phages have adapted their genomes to be extremely compact, having adjacent genes that overlap and genes completely inside of other longer genes. This non-delineated genome structure makes it difficult for gene prediction using the currently available gene annotators. Here we present PHANOTATE, a novel method for gene calling specifically designed for phage genomes. Although the compact nature of genes in phages is a problem for current gene annotators, we exploit this property by treating a phage genome as a network of paths: where open reading frames are favorable, and overlaps and gaps are less favorable, but still possible. We represent this network of connections as a weighted graph, and use dynamic programing to find the optimal path. Results We compare PHANOTATE to other gene callers by annotating a set of 2133 complete phage genomes from GenBank, using PHANOTATE and the three most popular gene callers. We found that the four programs agree on 82% of the total predicted genes, with PHANOTATE predicting more genes than the other three. We searched for these extra genes in both GenBank’s non-redundant protein database and all of the metagenomes in the sequence read archive, and found that they are present at levels that suggest that these are functional protein-coding genes. Availability and implementation https://github.com/deprekate/PHANOTATE Supplementary information Supplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
萝卜完成签到,获得积分10
1秒前
科研通AI6应助小张同学采纳,获得10
4秒前
酷波er应助123y采纳,获得10
4秒前
wukai完成签到,获得积分10
5秒前
HJJHJH发布了新的文献求助10
6秒前
7秒前
吉仔发布了新的文献求助10
8秒前
科研ing完成签到,获得积分10
10秒前
10秒前
斯文败类应助Msure采纳,获得10
12秒前
大个应助Msure采纳,获得10
12秒前
今后应助Msure采纳,获得10
12秒前
可爱的函函应助Msure采纳,获得10
12秒前
14秒前
15秒前
笮笮发布了新的文献求助10
15秒前
17秒前
埋头赶路应助HJJHJH采纳,获得10
17秒前
FashionBoy应助HJJHJH采纳,获得10
17秒前
酷波er应助HJJHJH采纳,获得10
17秒前
田様应助Jasmine采纳,获得10
18秒前
lixiaofan发布了新的文献求助10
19秒前
库里力完成签到 ,获得积分10
19秒前
20秒前
简单灵凡发布了新的文献求助10
20秒前
田様应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
顺利大门应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
21秒前
ccm应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
林夏应助科研通管家采纳,获得10
21秒前
ll发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642756
求助须知:如何正确求助?哪些是违规求助? 4759612
关于积分的说明 15018685
捐赠科研通 4801257
什么是DOI,文献DOI怎么找? 2566565
邀请新用户注册赠送积分活动 1524558
关于科研通互助平台的介绍 1484100