Three-dimensional localization microscopy using deep learning

计算机科学 显微镜 模式识别(心理学) 图像分辨率 显微镜 迭代重建 超分辨显微术
作者
Philipp Zelger,K. Kaser,Benedikt K. Rossboth,Lukas Velas,Gerhard J. Schütz,Alexander Jesacher
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:26 (25): 33166-33179 被引量:39
标识
DOI:10.1364/oe.26.033166
摘要

Single molecule localization microscopy (SMLM) is one of the fastest evolving and most broadly used super-resolving imaging techniques in the biosciences. While image recordings could take up to hours only ten years ago, scientists are now reaching for real-time imaging in order to follow the dynamics of biology. To this end, it is crucial to have data processing strategies available that are capable of handling the vast amounts of data produced by the microscope. In this article, we report on the use of a deep convolutional neural network (CNN) for localizing particles in three dimensions on the basis of single images. In test experiments conducted on fluorescent microbeads, we show that the precision obtained with a CNN can be comparable to that of maximum likelihood estimation (MLE), which is the accepted gold standard. Regarding speed, the CNN performs with about 22k localizations per second more than three orders of magnitude faster than the MLE algorithm of ThunderSTORM. If only five parameters are estimated (3D position, signal and background), our CNN implementation is currently slower than the fastest, recently published GPU-based MLE algorithm. However, in this comparison the CNN catches up with every additional parameter, with only a few percent extra time required per additional dimension. Thus it may become feasible to estimate further variables such as molecule orientation, aberration functions or color. We experimentally demonstrate that jointly estimating Zernike mode magnitudes for aberration modeling can significantly improve the accuracy of the estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助longjiafang采纳,获得10
刚刚
keke完成签到,获得积分10
刚刚
Double_xxxx发布了新的文献求助30
1秒前
打打应助Nicole采纳,获得10
1秒前
所所应助向上采纳,获得10
1秒前
xiaoww发布了新的文献求助20
1秒前
LVVVB发布了新的文献求助10
1秒前
大气的中蓝完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助50
4秒前
科研通AI6应助南乔采纳,获得10
4秒前
半夏完成签到,获得积分10
4秒前
5秒前
灵巧觅山发布了新的文献求助10
5秒前
6秒前
科研通AI5应助衫青采纳,获得10
6秒前
6秒前
7秒前
7秒前
9秒前
aaa完成签到,获得积分10
9秒前
9秒前
fcjnb应助keke采纳,获得20
9秒前
王桃矢发布了新的文献求助10
10秒前
在水一方应助shelemi采纳,获得10
10秒前
烟花应助shelemi采纳,获得10
10秒前
小蘑菇应助shelemi采纳,获得10
10秒前
欧耶完成签到,获得积分10
10秒前
黄bb完成签到,获得积分10
10秒前
洋芋粑发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
七八九发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
小蘑菇应助AM采纳,获得50
12秒前
向上发布了新的文献求助10
14秒前
拿锅轮发布了新的文献求助10
14秒前
LV完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942443
求助须知:如何正确求助?哪些是违规求助? 4208117
关于积分的说明 13080731
捐赠科研通 3987172
什么是DOI,文献DOI怎么找? 2182916
邀请新用户注册赠送积分活动 1198583
关于科研通互助平台的介绍 1110931