修正案
营养物
营养循环
生物量(生态学)
土壤碳
化学
微生物种群生物学
磷
生态系统
农学
土壤水分
自行车
环境化学
生态学
细菌
生物
有机化学
历史
考古
法学
遗传学
政治学
作者
Ding-Yu Shen,Chenglong Ye,Zhengkun Hu,Xiaoyun Chen,Hui Guo,Junyong Li,Guozhen Du,Sina Adl,Manqiang Liu
标识
DOI:10.1016/j.soilbio.2018.08.008
摘要
Nutrient amendment increases plant productivity but the effects and mechanisms on soil organic carbon (SOC) accumulation and stability remain unclear, especially in nutrient deficient alpine ecosystem. Here, based on an experiment combining nitrogen (N) and phosphorus (P) input continuously for 15 years, we found that nutrient amendment did not affect total SOC content, but increased mineral-associated C with decreasing soil aggregate stability. Despite increased total phospholipid fatty acid (PLFA) and bacteria PLFA, nutrient amendment decreased soil enzyme activities involved in C cycling. The 13C NMR analyses showed that nutrient amendment decreased the aliphaticity but enhanced aromaticity of SOC. Structural equation models indicated that P availability (Olsen-P content) was most related to shifts in microbial community composition and decreased enzyme activities. Moreover, the concomitantly reduced aggregation and increased mineral-associated C were mainly attributable to the decrease of fungal biomass and increase of bacterial biomass. Together, interconnected factors such as increased acidity, aggregate destabilization, microbial community shift towards bacteria, and loss of oxidative enzyme activities could contribute to the overall response of SOC under intensive N and P input. In particular, available P rather than N may re-shape the pattern of physical and chemical stabilization of SOC, shifting from moderately physical protection to highly chemical stability, implicating the pivotal roles of P management in C cycling of alpine ecosystem.
科研通智能强力驱动
Strongly Powered by AbleSci AI