亚型
乳腺癌
计算生物学
蛋白质基因组学
推论
转录组
基因组学
癌症
生物信息学
人工智能
特征(语言学)
计算机科学
过度拟合
疾病
生物
医学
生成模型
精密医学
临床试验
癌症生物标志物
机器学习
病理
生物信息学
DNA微阵列
数字化病理学
基因表达谱
个性化医疗
微阵列
肿瘤科
前列腺癌
鉴定(生物学)
生物标志物发现
作者
Brennan Simon,Clemens L G Weiss,Darren Chan,Lise Mangiante,Zhicheng Ma,Nhan Viet Tran,Allison Meisner,James M. Rae,Corey Speers,Kathy S. Albain,Cansu Karakas,Gregory R. Bean,Silvana Mourón,Miguel Quintela-Fandino,Christina Curtis
标识
DOI:10.64898/2025.12.29.692457
摘要
Breast cancer subtyping is essential for precision oncology, influencing prognosis, treatment selection, and clinical trial design. The Integrative Subtype Classification (IC) categorizes breast tumors into groups with distinct long-term outcomes based on genomic and correlated transcriptomic features. This method relies on sequencing data, which, despite decreasing costs, is not always available in research or clinical settings. Here we introduce PATH-IC, a computational pathology model that predicts ER+ breast cancer IC subtype risk of relapse categories from routine histology data. We enhance the current state-of-the-art computational pathology approach with BERGERON, which leverages generative AI to correct class imbalance and reduce overfitting, showing that synthetic data improves PATH-IC's performance by the equivalent of 41% more real training samples. PATH-IC achieves a testing AUROC of 0.814, with predictions correlating to Oncotype DX scores and long-term relapse risk. Using attention-based model interpretation and CRAWFORD, a novel embedding-to-image foundation model, we demonstrate that PATH-IC identifies expected tumor microenvironment patterns for IC subtypes and highlights heterochromatin condensation as a key feature of high-risk tumors. Matched single-cell spatial transcriptomics confirm IC subtype-specific gene expression patterns identified by PATH-IC, including active metabolic, proliferative, and proteostasis pathways in the high-risk group. PATH-IC advances computational pathology through generative AI, enabling subtype inference from histopathology data.
科研通智能强力驱动
Strongly Powered by AbleSci AI