推论
计算机科学
主题模型
卡尔曼滤波器
素描
人工智能
小波
多项式分布
概率逻辑
机器学习
系列(地层学)
数据挖掘
算法
计量经济学
数学
古生物学
生物
作者
David M. Blei,John Lafferty
出处
期刊:International Conference on Machine Learning
日期:2006-01-01
卷期号:: 113-120
被引量:2251
标识
DOI:10.1145/1143844.1143859
摘要
A family of probabilistic time series models is developed to analyze the time evolution of topics in large document collections. The approach is to use state space models on the natural parameters of the multinomial distributions that represent the topics. Variational approximations based on Kalman filters and nonparametric wavelet regression are developed to carry out approximate posterior inference over the latent topics. In addition to giving quantitative, predictive models of a sequential corpus, dynamic topic models provide a qualitative window into the contents of a large document collection. The models are demonstrated by analyzing the OCR'ed archives of the journal Science from 1880 through 2000.
科研通智能强力驱动
Strongly Powered by AbleSci AI