Modelling ecological niches with support vector machines

生态位 环境生态位模型 生态学 利基 物种分布 支持向量机 计算机科学 气候变化 机器学习 生物 栖息地
作者
John M. Drake,Christophe F. Randin,Antoine Guisan
出处
期刊:Journal of Applied Ecology [Wiley]
卷期号:43 (3): 424-432 被引量:321
标识
DOI:10.1111/j.1365-2664.2006.01141.x
摘要

Summary The ecological niche is a fundamental biological concept. Modelling species’ niches is central to numerous ecological applications, including predicting species invasions, identifying reservoirs for disease, nature reserve design and forecasting the effects of anthropogenic and natural climate change on species’ ranges. A computational analogue of Hutchinson's ecological niche concept (the multidimensional hyperspace of species’ environmental requirements) is the support of the distribution of environments in which the species persist. Recently developed machine‐learning algorithms can estimate the support of such high‐dimensional distributions. We show how support vector machines can be used to map ecological niches using only observations of species presence to train distribution models for 106 species of woody plants and trees in a montane environment using up to nine environmental covariates. We compared the accuracy of three methods that differ in their approaches to reducing model complexity. We tested models with independent observations of both species presence and species absence. We found that the simplest procedure, which uses all available variables and no pre‐processing to reduce correlation, was best overall. Ecological niche models based on support vector machines are theoretically superior to models that rely on simulating pseudo‐absence data and are comparable in empirical tests. Synthesis and applications . Accurate species distribution models are crucial for effective environmental planning, management and conservation, and for unravelling the role of the environment in human health and welfare. Models based on distribution estimation rather than classification overcome theoretical and practical obstacles that pervade species distribution modelling. In particular, ecological niche models based on machine‐learning algorithms for estimating the support of a statistical distribution provide a promising new approach to identifying species’ potential distributions and to project changes in these distributions as a result of climate change, land use and landscape alteration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谷闫发布了新的文献求助10
刚刚
刚刚
CT民工完成签到,获得积分10
刚刚
NexusExplorer应助鲜蘑采纳,获得10
1秒前
NexusExplorer应助小木凳子采纳,获得10
2秒前
无花果应助简单的银耳汤采纳,获得10
2秒前
2秒前
兴奋芷完成签到,获得积分10
2秒前
自然方盒完成签到,获得积分10
3秒前
完美世界应助Mine采纳,获得10
3秒前
傅剑完成签到,获得积分10
3秒前
科研通AI5应助Brak采纳,获得10
3秒前
Verglilus发布了新的文献求助10
3秒前
4秒前
lyx发布了新的文献求助10
4秒前
一只耳完成签到,获得积分10
4秒前
云悠水澈完成签到,获得积分10
4秒前
5秒前
KingYugene完成签到,获得积分10
5秒前
6秒前
小宇仔完成签到,获得积分10
6秒前
7秒前
HighFeng_Lei完成签到,获得积分10
7秒前
西西发布了新的文献求助10
8秒前
冰清完成签到,获得积分10
9秒前
Jabowoo发布了新的文献求助10
10秒前
kvnsl完成签到,获得积分10
10秒前
郝老头完成签到,获得积分10
10秒前
明志完成签到,获得积分10
11秒前
孙姣姣完成签到,获得积分10
11秒前
一定长完成签到 ,获得积分10
11秒前
茉莉Molly完成签到,获得积分10
11秒前
zhizhiman完成签到,获得积分10
12秒前
12秒前
12秒前
Zirong完成签到,获得积分10
12秒前
13秒前
小马甲应助无妄生欢采纳,获得10
14秒前
努力熊熊完成签到,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841290
求助须知:如何正确求助?哪些是违规求助? 3383312
关于积分的说明 10529152
捐赠科研通 3103372
什么是DOI,文献DOI怎么找? 1709237
邀请新用户注册赠送积分活动 823008
科研通“疑难数据库(出版商)”最低求助积分说明 773764