已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modelling ecological niches with support vector machines

生态位 环境生态位模型 生态学 利基 物种分布 支持向量机 计算机科学 气候变化 机器学习 生物 栖息地
作者
John M. Drake,Christophe F. Randin,Antoine Guisan
出处
期刊:Journal of Applied Ecology [Wiley]
卷期号:43 (3): 424-432 被引量:321
标识
DOI:10.1111/j.1365-2664.2006.01141.x
摘要

Summary The ecological niche is a fundamental biological concept. Modelling species’ niches is central to numerous ecological applications, including predicting species invasions, identifying reservoirs for disease, nature reserve design and forecasting the effects of anthropogenic and natural climate change on species’ ranges. A computational analogue of Hutchinson's ecological niche concept (the multidimensional hyperspace of species’ environmental requirements) is the support of the distribution of environments in which the species persist. Recently developed machine‐learning algorithms can estimate the support of such high‐dimensional distributions. We show how support vector machines can be used to map ecological niches using only observations of species presence to train distribution models for 106 species of woody plants and trees in a montane environment using up to nine environmental covariates. We compared the accuracy of three methods that differ in their approaches to reducing model complexity. We tested models with independent observations of both species presence and species absence. We found that the simplest procedure, which uses all available variables and no pre‐processing to reduce correlation, was best overall. Ecological niche models based on support vector machines are theoretically superior to models that rely on simulating pseudo‐absence data and are comparable in empirical tests. Synthesis and applications . Accurate species distribution models are crucial for effective environmental planning, management and conservation, and for unravelling the role of the environment in human health and welfare. Models based on distribution estimation rather than classification overcome theoretical and practical obstacles that pervade species distribution modelling. In particular, ecological niche models based on machine‐learning algorithms for estimating the support of a statistical distribution provide a promising new approach to identifying species’ potential distributions and to project changes in these distributions as a result of climate change, land use and landscape alteration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm完成签到 ,获得积分10
2秒前
3秒前
water完成签到,获得积分10
3秒前
3秒前
壮观沉鱼关注了科研通微信公众号
4秒前
6秒前
寒冷又晴完成签到,获得积分10
9秒前
Sarah发布了新的文献求助10
9秒前
微S发布了新的文献求助10
10秒前
夜星子发布了新的文献求助10
10秒前
10秒前
12秒前
lllttt发布了新的文献求助20
13秒前
田様应助Huaua采纳,获得10
14秒前
龙行天下发布了新的文献求助10
14秒前
15秒前
somus1997发布了新的文献求助10
15秒前
Asurary完成签到 ,获得积分10
16秒前
jery完成签到,获得积分10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
19秒前
lincanmou2发布了新的文献求助10
19秒前
20秒前
田様应助实打实大苏打采纳,获得10
21秒前
borisgugugugu发布了新的文献求助30
22秒前
22秒前
桦奕兮发布了新的文献求助10
23秒前
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344991
求助须知:如何正确求助?哪些是违规求助? 4480086
关于积分的说明 13945395
捐赠科研通 4377433
什么是DOI,文献DOI怎么找? 2405258
邀请新用户注册赠送积分活动 1397798
关于科研通互助平台的介绍 1370158