瑞舒伐他汀
药理学
Abcg2型
化学
IC50型
有机阴离子转运多肽
运输机
有机阴离子转运蛋白1
药代动力学
生物利用度
最大值
达芦那韦
ATP结合盒运输机
医学
体外
生物化学
基因
家庭医学
人类免疫缺陷病毒(HIV)
抗逆转录病毒疗法
病毒载量
作者
Robert Elsby,Paul Martin,Dominic Surry,Pradeep Sharma,Katherine S. Fenner
标识
DOI:10.1124/dmd.115.066795
摘要
The intestinal efflux transporter breast cancer resistance protein (BCRP) restricts the absorption of rosuvastatin. Of the transporters important to rosuvastatin disposition, fostamatinib inhibited BCRP (IC50 = 50 nM) and organic anion-transporting polypeptide 1B1 (OATP1B1; IC50 > 10 μM), but not organic anion transporter 3, in vitro, predicting a drug-drug interaction (DDI) in vivo through inhibition of BCRP only. Consequently, a clinical interaction study between fostamatinib and rosuvastatin was performed (and reported elsewhere). This confirmed the critical role BCRP plays in statin absorption, as inhibition by fostamatinib resulted in a significant 1.96-fold and 1.88-fold increase in rosuvastatin area under the plasma concentration–time curve (AUC) and Cmax, respectively. An in vitro BCRP inhibition assay, using polarized Caco-2 cells and rosuvastatin as probe substrate, was subsequently validated with literature inhibitors and used to determine BCRP inhibitory potencies (IC50) of the perpetrator drugs eltrombopag, darunavir, lopinavir, clopidogrel, ezetimibe, fenofibrate, and fluconazole. OATP1B1 inhibition was also determined using human embryonic kidney 293–OATP1B1 cells versus estradiol 17β-glucuronide. Calculated parameters of maximum enterocyte concentration [Igut max], maximum unbound hepatic inlet concentration, transporter fraction excreted value, and determined IC50 value were incorporated into mechanistic static equations to compute theoretical increases in rosuvastatin AUC due to inhibition of BCRP and/or OATP1B1. Calculated theoretical increases in exposure correctly predicted the clinically observed changes in rosuvastatin exposure and suggested intestinal BCRP inhibition (not OATP1B1) to be the mechanism underlying the DDIs with these drugs. In conclusion, solitary inhibition of the intestinal BCRP transporter can result in clinically significant DDIs with rosuvastatin, causing up to a maximum 2-fold increase in exposure, which may warrant statin dose adjustment in clinical practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI