A Framework for Community Detection in Large Networks Using Game-Theoretic Modeling

计算机科学 模块化(生物学) 群落结构 集团渗流法 复杂网络 分拆(数论) 纳什均衡 博弈论 理论计算机科学 节点(物理) 数据挖掘 人工智能 数学优化 数学 工程类 组合数学 万维网 数理经济学 生物 结构工程 遗传学
作者
Pravin Chopade,Justin Zhan
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:3 (3): 276-288 被引量:41
标识
DOI:10.1109/tbdata.2016.2628725
摘要

Community detection is a fundamental component of large network analysis. In both academia and industry, progressive research has been made on problems related to community network analysis. Community detection is gaining significant attention and importance in the area of network science. Regular and synthetic complex networks have motivated intense interest in studying the fundamental unifying principles of various complex networks. This paper presents a new game-theoretic approach towards community detection in large-scale complex networks based on modified modularity; this method was developed based on modified adjacency, modified Laplacian matrices and neighborhood similarity. This approach was used to partition a given network into dense communities. It is based on determining a Nash stable partition, which is a pure strategy Nash equilibrium of an appropriately defined strategic game in which the nodes of the network were the players and the strategy of a node was to decide to which community it ought to belong. Players chose to belong to a community according to a maximized fitness/payoff. Quality of the community networks was assessed using modified modularity along with a new fitness function. Community partitioning was performed using Normalized Mutual Information and a `modularity measure', which involved comparing the new game-theoretic community detection algorithm (NGTCDA) with well-studied and well-known algorithms, such as Fast Newman, Fast Modularity Detection, and Louvain Community. The quality of a network partition in communities was evaluated by looking at the contribution of each node and its neighbors against the strength of its community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GG关闭了GG文献求助
刚刚
SHC完成签到,获得积分10
刚刚
1秒前
1秒前
船舵完成签到,获得积分10
1秒前
zbh022发布了新的文献求助10
1秒前
2秒前
沉静傲霜完成签到,获得积分10
2秒前
SBQHY完成签到,获得积分10
2秒前
2秒前
研友_Ze20g8完成签到,获得积分10
3秒前
Linng发布了新的文献求助10
3秒前
水水发布了新的文献求助10
3秒前
伽易完成签到,获得积分10
4秒前
祥子的骆驼完成签到,获得积分20
4秒前
4秒前
孙美娜发布了新的文献求助20
4秒前
苏苏完成签到,获得积分10
5秒前
6秒前
Jasper应助拼搏半梦采纳,获得10
6秒前
无极微光应助善良天抒采纳,获得20
6秒前
万十u完成签到,获得积分10
6秒前
7秒前
chenxiyin发布了新的文献求助10
7秒前
汝桢完成签到 ,获得积分10
7秒前
SBQHY完成签到,获得积分10
7秒前
科目三应助liusen采纳,获得10
7秒前
SciGPT应助瘦瘦的青柏采纳,获得10
7秒前
lqiqiqir完成签到,获得积分10
7秒前
eye完成签到,获得积分10
8秒前
111222完成签到,获得积分20
8秒前
什么也难不倒我完成签到 ,获得积分10
9秒前
Linng完成签到,获得积分10
9秒前
Dream_fai发布了新的文献求助10
9秒前
9秒前
9秒前
luyong完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
丘比特应助85号星星采纳,获得10
10秒前
苗条的钻石应助江楠采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483374
求助须知:如何正确求助?哪些是违规求助? 4584081
关于积分的说明 14394500
捐赠科研通 4513704
什么是DOI,文献DOI怎么找? 2473645
邀请新用户注册赠送积分活动 1459635
关于科研通互助平台的介绍 1433108