Weakly Supervised Biomedical Image Segmentation by Reiterative Learning

计算机科学 人工智能 分割 深度学习 注释 图像分割 最大值和最小值 交叉口(航空) 模式识别(心理学) 人工神经网络 特征提取 机器学习 市场细分 数学 工程类 数学分析 业务 航空航天工程 营销
作者
Qiaokang Liang,Nan Yang,Gianmarc Coppola,Kunglin Zou,Wei Sun,Dan Zhang,Yaonan Wang,Guanzhen Yu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 1205-1214 被引量:53
标识
DOI:10.1109/jbhi.2018.2850040
摘要

Recent advances in deep learning have produced encouraging results for biomedical image segmentation; however, outcomes rely heavily on comprehensive annotation. In this paper, we propose a neural network architecture and a new algorithm, known as overlapped region forecast, for the automatic segmentation of gastric cancer images. To the best of our knowledge, this report for the first time describes that deep learning has been applied to the segmentation of gastric cancer images. Moreover, a reiterative learning framework that achieves superior performance without pretraining or further manual annotation is presented to train a simple network on weakly annotated biomedical images. We customize the loss function to make the model converge faster while avoiding becoming trapped in local minima. Patch boundary errors were eliminated by our overlapped region forecast algorithm. By studying the characteristics of the model trained using two different patch extraction methods, we train iteratively and integrate predictions and weak annotations to improve the quality of the training data. Using these methods, a mean Intersection over Union coefficient of 0.883 and a mean accuracy of 91.09% were achieved on the partially labeled dataset, thereby securing a win in the 2017 China Big Data and Artificial Intelligence Innovation and Entrepreneurship Competition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的衫完成签到,获得积分10
刚刚
斯文汉堡完成签到,获得积分10
刚刚
刚刚
宁远完成签到,获得积分20
1秒前
黄饱饱完成签到,获得积分10
2秒前
2秒前
MIAO发布了新的文献求助10
3秒前
4秒前
拥有八根情丝完成签到,获得积分10
4秒前
albertxin完成签到,获得积分10
4秒前
在水一方应助ad钙采纳,获得10
4秒前
4秒前
852应助彳亍采纳,获得10
4秒前
4秒前
123发布了新的文献求助10
4秒前
谦让觅风发布了新的文献求助80
4秒前
5秒前
orixero应助尤狸子采纳,获得10
5秒前
6秒前
脑洞疼应助宁远采纳,获得10
6秒前
7秒前
和谐白羊发布了新的文献求助30
7秒前
MIAO发布了新的文献求助10
7秒前
高贵的元彤关注了科研通微信公众号
8秒前
8秒前
CipherSage应助cc采纳,获得10
8秒前
8秒前
橘子发布了新的文献求助10
8秒前
xingyu完成签到,获得积分10
8秒前
8秒前
123发布了新的文献求助10
8秒前
Xu发布了新的文献求助10
9秒前
zak完成签到,获得积分20
10秒前
10秒前
Tin发布了新的文献求助10
10秒前
10秒前
11秒前
上官若男应助旺旺采纳,获得10
11秒前
丘比特应助殷勤的静竹采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712710
求助须知:如何正确求助?哪些是违规求助? 5211827
关于积分的说明 15268582
捐赠科研通 4864522
什么是DOI,文献DOI怎么找? 2611551
邀请新用户注册赠送积分活动 1561833
关于科研通互助平台的介绍 1519066