Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation

计算机科学 遥感 支持向量机 地球观测 随机森林 过程(计算) 数据挖掘 机器学习 卫星 地理 操作系统 工程类 航空航天工程
作者
Salvatore Praticò,Francesco Solano,Salvatore Di Fazio,Giuseppe Modica
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (4): 586-586 被引量:177
标识
DOI:10.3390/rs13040586
摘要

The sustainable management of natural heritage is presently considered a global strategic issue. Owing to the ever-growing availability of free data and software, remote sensing (RS) techniques have been primarily used to map, analyse, and monitor natural resources for conservation purposes. The need to adopt multi-scale and multi-temporal approaches to detect different phenological aspects of different vegetation types and species has also emerged. The time-series composite image approach allows for capturing much of the spectral variability, but presents some criticalities (e.g., time-consuming research, downloading data, and the required storage space). To overcome these issues, the Google Earth engine (GEE) has been proposed, a free cloud-based computational platform that allows users to access and process remotely sensed data at petabyte scales. The application was tested in a natural protected area in Calabria (South Italy), which is particularly representative of the Mediterranean mountain forest environment. In the research, random forest (RF), support vector machine (SVM), and classification and regression tree (CART) algorithms were used to perform supervised pixel-based classification based on the use of Sentinel-2 images. A process to select the best input image (seasonal composition strategies, statistical operators, band composition, and derived vegetation indices (VIs) information) for classification was implemented. A set of accuracy indicators, including overall accuracy (OA) and multi-class F-score (Fm), were computed to assess the results of the different classifications. GEE proved to be a reliable and powerful tool for the classification process. The best results (OA = 0.88 and Fm = 0.88) were achieved using RF with the summer image composite, adding three VIs (NDVI, EVI, and NBR) to the Sentinel-2 bands. SVM and RF produced OAs of 0.83 and 0.80, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
唠叨的傲薇完成签到 ,获得积分10
2秒前
3秒前
3秒前
高高完成签到,获得积分10
4秒前
科研通AI5应助hy123采纳,获得10
4秒前
gsokok完成签到,获得积分10
4秒前
Vesper完成签到 ,获得积分10
6秒前
6秒前
Aline发布了新的文献求助10
6秒前
伶俐的紫蓝完成签到,获得积分10
8秒前
orixero应助程公子采纳,获得10
8秒前
10秒前
10秒前
小卷粉完成签到 ,获得积分10
10秒前
XD824发布了新的文献求助10
11秒前
xlk2222完成签到,获得积分10
12秒前
14秒前
调皮醉波完成签到 ,获得积分10
15秒前
田様应助活力以冬采纳,获得10
15秒前
小HO完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
chen1999完成签到,获得积分10
17秒前
18秒前
彩色尔丝发布了新的文献求助10
19秒前
俏皮短靴发布了新的文献求助10
21秒前
小蘑菇应助zhaopeipei采纳,获得10
21秒前
sduweiyu完成签到 ,获得积分10
25秒前
27秒前
28秒前
细腻戒指完成签到,获得积分10
32秒前
33秒前
彩色的老头完成签到 ,获得积分10
33秒前
俏皮短靴完成签到,获得积分20
34秒前
chi完成签到 ,获得积分10
35秒前
lalala完成签到 ,获得积分10
36秒前
科研通AI6应助彩色尔丝采纳,获得10
36秒前
滴滴完成签到 ,获得积分10
36秒前
36秒前
王sir完成签到,获得积分10
38秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4217570
求助须知:如何正确求助?哪些是违规求助? 3751618
关于积分的说明 11796493
捐赠科研通 3416299
什么是DOI,文献DOI怎么找? 1874990
邀请新用户注册赠送积分活动 928798
科研通“疑难数据库(出版商)”最低求助积分说明 837849