Image Difficulty Curriculum for Generative Adversarial Networks (CuGAN)

鉴别器 计算机科学 课程 图像翻译 图像(数学) 人工智能 生成语法 排名(信息检索) 趋同(经济学) 机器学习 对抗制 图像合成 翻译(生物学) 模式识别(心理学) 心理学 信使核糖核酸 基因 探测器 经济 化学 电信 生物化学 经济增长 教育学
作者
Petru Soviany,Claudiu Ardei,Radu Tudor Ionescu,Marius Leordeanu
标识
DOI:10.1109/wacv45572.2020.9093408
摘要

Despite the significant advances in recent years, Generative Adversarial Networks (GANs) are still notoriously hard to train. In this paper, we propose three novel curriculum learning strategies for training GANs. All strategies are first based on ranking the training images by their difficulty scores, which are estimated by a state-of-the-art image difficulty predictor. Our first strategy is to divide images into gradually more difficult batches. Our second strategy introduces a novel curriculum loss function for the discriminator that takes into account the difficulty scores of the real images. Our third strategy is based on sampling from an evolving distribution, which favors the easier images during the initial training stages and gradually converges to a uniform distribution, in which samples are equally likely, regardless of difficulty. We compare our curriculum learning strategies with the classic training procedure on two tasks: image generation and image translation. Our experiments indicate that all strategies provide faster convergence and superior results. For example, our best curriculum learning strategy applied on spectrally normalized GANs (SNGANs) fooled human annotators in thinking that generated CIFAR-like images are real in 25.0% of the presented cases, while the SNGANs trained using the classic procedure fooled the annotators in only 18.4% cases. Similarly, in image translation, the human annotators preferred the images produced by the Cycle-consistent GAN (CycleGAN) trained using curriculum learning in 40.5% cases and those produced by CycleGAN based on classic training in only 19.8% cases, 39.7% cases being labeled as ties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
松鼠完成签到 ,获得积分10
4秒前
feizao完成签到,获得积分10
4秒前
5秒前
研友_08oErn发布了新的文献求助10
5秒前
7秒前
8秒前
巴巴爸爸发布了新的文献求助10
8秒前
ELL发布了新的文献求助10
8秒前
科研通AI5应助wuniuniu采纳,获得10
8秒前
典雅的惜萱完成签到,获得积分10
8秒前
10秒前
11秒前
12秒前
12秒前
13秒前
14秒前
lgbabe发布了新的文献求助10
15秒前
科研通AI2S应助夏天采纳,获得10
15秒前
Charon完成签到,获得积分10
16秒前
coolmmvsyou发布了新的文献求助10
17秒前
xumodehudie完成签到 ,获得积分10
17秒前
shiyu发布了新的文献求助10
18秒前
strickland发布了新的文献求助50
18秒前
观光完成签到,获得积分10
18秒前
19秒前
19秒前
星辰大海应助邹芳清采纳,获得10
21秒前
科研助手6应助lgbabe采纳,获得10
23秒前
23秒前
23秒前
甜晞发布了新的文献求助10
24秒前
24秒前
顺心不弱发布了新的文献求助10
25秒前
小蘑菇应助苏苏苏采纳,获得10
26秒前
大尾尾完成签到,获得积分20
26秒前
26秒前
soapffz完成签到,获得积分10
29秒前
过儿发布了新的文献求助10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818646
求助须知:如何正确求助?哪些是违规求助? 3361710
关于积分的说明 10413854
捐赠科研通 3079926
什么是DOI,文献DOI怎么找? 1693653
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248