Using single-cell RNA sequencing to unravel cell lineage relationships in the respiratory tract

生物 呼吸上皮 细胞生物学 祖细胞 上皮 细胞分化 细胞 电池类型 谱系标记 干细胞 转录组 基因 遗传学 基因表达
作者
Laure‐Emmanuelle Zaragosi,Manuel Deprez,Pascal Barbry
出处
期刊:Biochemical Society Transactions [Portland Press]
卷期号:48 (1): 327-336 被引量:60
标识
DOI:10.1042/bst20191010
摘要

The respiratory tract is lined by a pseudo-stratified epithelium from the nose to terminal bronchioles. This first line of defense of the lung against external stress includes five main cell types: basal, suprabasal, club, goblet and multiciliated cells, as well as rare cells such as ionocytes, neuroendocrine and tuft/brush cells. At homeostasis, this epithelium self-renews at low rate but is able of fast regeneration upon damage. Airway epithelial cell lineages during regeneration have been investigated in the mouse by genetic labeling, mainly after injuring the epithelium with noxious agents. From these approaches, basal cells have been identified as progenitors of club, goblet and multiciliated cells, but also of ionocytes and neuroendocrine cells. Single-cell RNA sequencing, coupled to lineage inference algorithms, has independently allowed the establishment of comprehensive pictures of cell lineage relationships in both mouse and human. In line with genetic tracing experiments in mouse trachea, studies using single-cell RNA sequencing (RNAseq) have shown that basal cells first differentiate into club cells, which in turn mature into goblet cells or differentiate into multiciliated cells. In the human airway epithelium, single-cell RNAseq has identified novel intermediate populations such as deuterosomal cells, 'hybrid' mucous-multiciliated cells and progenitors of rare cells. Novel differentiation dynamics, such as a transition from goblet to multiciliated cells have also been discovered. The future of cell lineage relationships in the respiratory tract now resides in the combination of genetic labeling approaches with single-cell RNAseq to establish, in a definitive manner, the hallmarks of cellular lineages in normal and pathological situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小雨发布了新的文献求助10
1秒前
神奇宝贝完成签到,获得积分10
2秒前
orixero应助大魁采纳,获得10
2秒前
3秒前
十字勋章发布了新的文献求助10
3秒前
鹏1发布了新的文献求助10
3秒前
zzzhu完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
摘星012完成签到 ,获得积分10
5秒前
打打应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
DAYDAY完成签到 ,获得积分10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
许甜甜鸭应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
看看看完成签到,获得积分10
7秒前
7秒前
Owen应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得30
7秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
yanyuqing发布了新的文献求助10
8秒前
8秒前
Ranrunn发布了新的文献求助10
8秒前
9秒前
JIA发布了新的文献求助10
9秒前
qin完成签到 ,获得积分10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835165
求助须知:如何正确求助?哪些是违规求助? 3377669
关于积分的说明 10499742
捐赠科研通 3097244
什么是DOI,文献DOI怎么找? 1705614
邀请新用户注册赠送积分活动 820629
科研通“疑难数据库(出版商)”最低求助积分说明 772149