Computer-assisted EFL writing and evaluations based on artificial intelligence: a case from a college reading and writing course

独创性 计算机科学 阅读(过程) 数学教育 期望理论 可靠性(半导体) 心理学 人工智能 社会心理学 创造力 政治学 量子力学 物理 功率(物理) 法学
作者
Wang Zhi-jie
出处
期刊:Library Hi Tech [Emerald Publishing Limited]
卷期号:40 (1): 80-97 被引量:68
标识
DOI:10.1108/lht-05-2020-0113
摘要

Purpose The aim of this study is to explore students' expectations and perceived effectiveness of computer-assisted review tools, and the differences in reliability and validity between human evaluation and automatic evaluation, to find a way to improve students' English writing ability. Design/methodology/approach Based on the expectancy disconfirmation theory (EDT) and Intelligent Computer-Assisted Language Learning (ICALL) theory, an experiment is conducted through the observation method, semistructured interview method and questionnaire survey method. In the experiment, respondents were asked to write and submit four essays on three online automated essay evaluation (AEE) systems in total, one essay every two weeks. Also, two teacher raters were invited to score the first and last papers of each student. The respondents' feedbacks were investigated to confirm the effectiveness of the AEE system; the evaluation results of the AEE systems and teachers were compared; descriptive statistics was used to analyze the experimental data. Findings The experiment revealed that the respondents held high expectations for the computer-assisted evaluation tools, and the effectiveness of computer scoring feedback on students was higher than that of teacher scoring feedback. Moreover, at the end of the writing project, the students' independent learning ability and English writing ability were significantly improved. Besides, there was a positive correlation between students' initial expectations of computer-assisted learning tools and the final evaluation of learning results. Originality/value The innovation lies in the use of observation methods, questionnaire survey methods, data analysis, and other methods for the experiment, and the combination of deep learning theory, EDT and descriptive statistics, which has particular reference value for future works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助初柒采纳,获得10
刚刚
酷波er应助大气菠萝采纳,获得20
1秒前
研友_xnEOX8完成签到,获得积分10
1秒前
阿容完成签到,获得积分10
1秒前
Coco椰发布了新的文献求助10
1秒前
2秒前
666完成签到 ,获得积分10
4秒前
研友_xnEOX8发布了新的文献求助50
4秒前
4秒前
5秒前
5秒前
5秒前
机智的誉发布了新的文献求助10
6秒前
拾柒完成签到,获得积分10
7秒前
潇洒如凡完成签到,获得积分10
7秒前
gwd发布了新的文献求助10
7秒前
Coco椰完成签到,获得积分10
8秒前
端庄的梦山完成签到,获得积分20
9秒前
归尘发布了新的文献求助10
9秒前
10秒前
拾柒发布了新的文献求助20
11秒前
哭泣乌发布了新的文献求助10
12秒前
可爱的函函应助潇洒如凡采纳,获得10
12秒前
12秒前
我爱亲柠檬完成签到,获得积分10
13秒前
小蚂蚁完成签到 ,获得积分10
13秒前
14秒前
JerryZ发布了新的文献求助10
17秒前
18秒前
coolkid应助SeTen采纳,获得10
18秒前
Flora完成签到,获得积分10
19秒前
隐形曼青应助Faine采纳,获得10
20秒前
olofmeister发布了新的文献求助10
21秒前
22秒前
23秒前
CDI和LIB发布了新的文献求助10
23秒前
Jeff发布了新的文献求助10
23秒前
小小猪完成签到,获得积分10
24秒前
诚心冬亦发布了新的文献求助10
27秒前
小小猪发布了新的文献求助10
27秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Finite Groups: An Introduction 800
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3909190
求助须知:如何正确求助?哪些是违规求助? 3455037
关于积分的说明 10881766
捐赠科研通 3180893
什么是DOI,文献DOI怎么找? 1757507
邀请新用户注册赠送积分活动 850229
科研通“疑难数据库(出版商)”最低求助积分说明 791999