An Empirical Analysis to Assess the Operational Design Domain of Lane Keeping System Equipped Vehicles Combining Objective and Subjective Risk Measures

原设备制造商 自动化 工程类 度量(数据仓库) 领域(数学分析) 领域(数学) 概率逻辑 风险分析(工程) 运输工程 计算机科学 模拟 人工智能 数据挖掘 数学 医学 数学分析 纯数学 操作系统 机械工程
作者
Haneen Farah,Shubham Bhusari,Paul van Gent,Freddy Antony Mullakkal-Babu,Peter Morsink,Riender Happee,Bart van Arem
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (5): 2589-2598 被引量:28
标识
DOI:10.1109/tits.2020.2969928
摘要

Lower levels of automation are designed to work in specific conditions referred to as the Operational Design Domain (ODD). Beyond these conditions, the human driver is expected to take control. A mismatch between a driver's understanding and expectations of the automated vehicle capabilities and its actual capabilities as prescribed in the Original Equipment Manufacturers (OEMs) manual, could affect their safety and trust in automation. The main aim of this study is to develop a method for assessing the ODD of lane keeping system equipped vehicles. The analysis method is composed of an objective driving risk measure based on the Probabilistic Driving Risk Field (PDRF), and a subjective risk measure based on driver behavior, trust and situation awareness. We demonstrate the method applicability using the Automated Lane Keeping system of the Tesla Model S. A field test was conducted with 19 participants on public roads in the Netherlands including situations within and outside the defined ODD by the OEM. Across all test situations, a mismatch was observed between the ODD specified by the OEM and by the driver. Situations outside the ODD (i.e. no-lane markings and on/off-ramp) were often regarded as within the ODD by the participants. Situations inside the ODD (i.e. tunnel and curve) were mostly correctly classified by the participants. This analysis method has the potential to aid OEMs and road operators in defining more clearly the ODD while taking into account the driver's safety and awareness of the system capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三千凡世尽浮华完成签到 ,获得积分10
2秒前
cupid关注了科研通微信公众号
2秒前
琉璃发布了新的文献求助10
4秒前
4秒前
jiabu完成签到,获得积分10
4秒前
科研通AI6.2应助毛耳朵采纳,获得30
4秒前
伶俐的傲白完成签到 ,获得积分10
6秒前
陈幡发布了新的文献求助10
6秒前
8秒前
Iridescent完成签到 ,获得积分10
10秒前
现代匪完成签到,获得积分10
10秒前
12秒前
cupid发布了新的文献求助10
12秒前
14秒前
不想起昵称完成签到,获得积分10
16秒前
liuf完成签到,获得积分10
16秒前
爱笑愚志完成签到 ,获得积分10
17秒前
苏子愈发布了新的文献求助10
18秒前
19秒前
科研通AI6.2应助陈幡采纳,获得10
19秒前
21秒前
Cao完成签到 ,获得积分0
24秒前
搜集达人应助Hosea采纳,获得10
24秒前
有魅力的乐珍完成签到 ,获得积分10
26秒前
FLOR完成签到,获得积分10
28秒前
水草帽完成签到 ,获得积分10
29秒前
30秒前
happyAlice完成签到,获得积分10
30秒前
33秒前
饱满的剑封完成签到,获得积分10
34秒前
34秒前
drama_queen完成签到,获得积分10
35秒前
Scalpel发布了新的文献求助10
36秒前
Fortitude发布了新的文献求助10
38秒前
水草帽完成签到 ,获得积分10
38秒前
hb完成签到,获得积分0
41秒前
Hosea发布了新的文献求助10
41秒前
bkagyin应助插线板采纳,获得30
43秒前
曾昊天完成签到,获得积分10
44秒前
abc关注了科研通微信公众号
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869048
求助须知:如何正确求助?哪些是违规求助? 6447967
关于积分的说明 15660205
捐赠科研通 4984749
什么是DOI,文献DOI怎么找? 2688123
邀请新用户注册赠送积分活动 1630586
关于科研通互助平台的介绍 1588625