Wire-in-tube ZnO@carbon by molecular layer deposition: Accurately tunable electromagnetic parameters and remarkable microwave absorption

材料科学 微波食品加热 管(容器) 图层(电子) 吸收(声学) 沉积(地质) 碳纤维 光电子学 纳米技术 化学工程 复合材料 冶金 电信 复合数 古生物学 沉积物 计算机科学 工程类 生物
作者
Lili Yan,Min Zhang,Shichao Zhao,Tijian Sun,Bin Zhang,Mao‐Sheng Cao,Yong Qin
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:382: 122860-122860 被引量:142
标识
DOI:10.1016/j.cej.2019.122860
摘要

Yolk–shell and one-dimensional structures are promising microwave absorption structures due to the microwave multi-reflection and scattering sites of yolk–shell structure, and the conductive network that is easily formed by one-dimensional structure. The wire-in-tube structure may be a more effective microwave absorption structure because it combines the advantages of one-dimensional and yolk–shell structures. However, conventional methods are difficult to realize such a structure because of the weak controllability of the structure, and it is impossible to tune the absorption band or optimize the absorption performance by precisely tailoring the structure. Molecular layer deposition (MLD), with excellent structure controllability, is an effective strategy to overcome this problem. In this work, a novel wire-in-tube [email protected] nanostructure was realized by polyimide MLD–calcination strategy. The ZnO cores and carbon shells form voids between them by a redox process during calcination, conducive to microwave multi-refection and scattering. More importantaly, by tuning the number of deposition cycles, the carbon shell thickness can be adjusted at the atomic scale so as to modulate the absorption bands effectively. Maximum absorption of −50.05 dB and a bandwidth of 5.68 GHz are simultaneously achieved at a matching thickness of 2.0 mm. The polyimide MLD–calcination strategy not only provides a novel wire-in-tube structure with remarkable microwave absorption performance, but diversifies carbonaceous material fabrication methods, extending the applications to supercapacitors, sensing, catalysis, and the biomedical fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助YaoHui采纳,获得10
刚刚
刚刚
刚刚
xxl完成签到,获得积分10
刚刚
hanhan完成签到,获得积分20
1秒前
知性的囧发布了新的文献求助10
1秒前
yxy发布了新的文献求助30
1秒前
2秒前
Orange应助louge采纳,获得10
2秒前
2秒前
2秒前
慕青应助ljy采纳,获得10
2秒前
无花果应助dong采纳,获得10
2秒前
桐桐应助Ruby采纳,获得10
3秒前
Jack完成签到 ,获得积分10
3秒前
李爱国应助静默采纳,获得10
3秒前
徐个徐关注了科研通微信公众号
3秒前
山止川行发布了新的文献求助10
4秒前
Owen应助悦耳寒松采纳,获得10
4秒前
蛋仔完成签到,获得积分10
4秒前
ZiC发布了新的文献求助40
4秒前
5秒前
bkagyin应助张张采纳,获得10
5秒前
6秒前
7秒前
ccc完成签到,获得积分10
7秒前
毛耳朵发布了新的文献求助10
7秒前
123关闭了123文献求助
8秒前
自觉的契发布了新的文献求助10
8秒前
taco发布了新的文献求助10
8秒前
kattt完成签到,获得积分10
8秒前
9秒前
9秒前
糯米糍发布了新的文献求助10
9秒前
Rupp关注了科研通微信公众号
9秒前
9秒前
盛乾亮发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906