RNPredATC: a deep residual learning-based model with applications to the prediction of drug-ATC code association

计算机科学 编码(集合论) 机器学习 人工智能 数据挖掘 残余物 相似性(几何) 联想(心理学) 药品 源代码 医学 药理学 算法 认识论 操作系统 图像(数学) 哲学 集合(抽象数据类型) 程序设计语言
作者
Haochen Zhao,Guihua Duan,Peng Ni,Cheng Yan,Yaohang Li,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 2712-2723 被引量:8
标识
DOI:10.1109/tcbb.2021.3088256
摘要

The Anatomical Therapeutic Chemical (ATC) classification system, designated by the World Health Organization Collaborating Center (WHOCC), has been widely used in drug screening, repositioning, and similarity research. The ATC classification system assigns different codes to drugs according to the organ or system on which they act and/or their therapeutic and chemical characteristics. Correctly identifying the potential ATC codes for drugs can accelerate drug development and reduce the cost of experiments. Several classifiers have been proposed in this regard. However, they lack of ability to learn basic features from sparsely known drug-ATC code associations. Therefore, there is an urgent need for novel computational methods to precisely predict potential drug-ATC code associations in multiple levels of the ATC classification system based on known associations between drugs and ATC codes. In this paper, we provide a novel end-to-end model, so-called RNPredATC, to predict potential drug-ATC code associations in five ATC classification levels. RNPredATC can extract dense feature vectors from sparsely known drug-ATC code associations and reduce the impact from the degradation problem by a novel deep residual learning. We extensively compare our method with some state-of-the-art methods, including NetPredATC, SPACE, and some multi-label-based methods. Our experimental results show that RNPredATC achieves better performances in five-fold and ten-fold cross validations. Furthermore, the visualization analysis of hidden layers and case studies of predicted associations at the fifth ATC classification level confirm that RNPredATC can effectively identify the potential ATC codes of drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙燕应助科研通管家采纳,获得10
刚刚
薄灯男孩发布了新的文献求助10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
打卡下班应助科研通管家采纳,获得20
1秒前
慕青应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
何相逢应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
2秒前
lml完成签到,获得积分10
3秒前
童大大发布了新的文献求助10
4秒前
苹果发布了新的文献求助10
4秒前
梅思寒完成签到 ,获得积分10
4秒前
7秒前
7秒前
7秒前
科研民工李完成签到,获得积分10
8秒前
9秒前
眼睛大的乐儿完成签到,获得积分10
12秒前
帅气的襄发布了新的文献求助10
12秒前
12秒前
Harbour-Y完成签到,获得积分10
13秒前
小伊娃完成签到,获得积分20
13秒前
castle应助童大大采纳,获得10
13秒前
14秒前
小砖家ing发布了新的文献求助10
15秒前
赘婿应助墨仁千智采纳,获得10
16秒前
yhh驳回了丘比特应助
16秒前
wulififi发布了新的文献求助10
16秒前
今后应助帅气的襄采纳,获得10
17秒前
17秒前
Jasper应助仲大船采纳,获得10
17秒前
18秒前
赖建琛完成签到 ,获得积分10
20秒前
午盏发布了新的文献求助10
21秒前
自觉竺发布了新的文献求助10
21秒前
王者归来完成签到,获得积分10
21秒前
帅气的襄完成签到,获得积分20
22秒前
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4126291
求助须知:如何正确求助?哪些是违规求助? 3663886
关于积分的说明 11593318
捐赠科研通 3363474
什么是DOI,文献DOI怎么找? 1848222
邀请新用户注册赠送积分活动 912232
科研通“疑难数据库(出版商)”最低求助积分说明 827947