Learning interpretable representations of entanglement in quantum optics experiments using deep generative models

自编码 计算机科学 人工智能 量子光学 物理 量子纠缠 量子力学 量子 量子传感器 深度学习 量子信息 理论物理学 统计物理学 量子网络
作者
Daniel Flam-Shepherd,Tony Wu,Xuemei Gu,Alba Cervera-Lierta,Mario Krenn,Alán Aspuru‐Guzik
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (6): 544-554 被引量:20
标识
DOI:10.1038/s42256-022-00493-5
摘要

Quantum physics experiments produce interesting phenomena such as interference or entanglement, which are the core properties of numerous future quantum technologies. The complex relationship between the setup structure of a quantum experiment and its entanglement properties is essential to fundamental research in quantum optics but is difficult to intuitively understand. We present a deep generative model of quantum optics experiments where a variational autoencoder is trained on a dataset of quantum optics experiment setups. In a series of computational experiments, we investigate the learned representation of our quantum optics variational autoencoder (QOVAE) and its internal understanding of the quantum optics world. We demonstrate that QOVAE learns an interpretable representation of quantum optics experiments and the relationship between the experiment structure and entanglement. We show QOVAE is able to generate novel experiments for highly entangled quantum states with specific distributions that match its training data. QOVAE can learn to generate specific entangled states and efficiently search the space of experiments that produce highly entangled quantum states. Importantly, we are able to interpret how QOVAE structures its latent space, finding curious patterns that we can explain in terms of quantum physics. The results demonstrate how we can use and understand the internal representations of deep generative models in a complex scientific domain. QOVAE and the insights from our investigations can be immediately applied to other physical systems. A variational autoencoder is trained on a dataset of quantum optics experiment configurations and learns an interpretable representation of the relationship between experiment setup and quantum entanglement. The approach can be used to explore new experiment designs with specific, highly entangled states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
师宁完成签到,获得积分10
1秒前
西西完成签到 ,获得积分10
1秒前
橙以澄完成签到,获得积分10
1秒前
Orange应助cp3xzh采纳,获得10
1秒前
ALONE完成签到,获得积分10
1秒前
yyj完成签到,获得积分10
2秒前
追寻紫安完成签到,获得积分10
2秒前
河工大nature发表者完成签到 ,获得积分10
2秒前
ZCY完成签到,获得积分10
2秒前
丹布里发布了新的文献求助10
2秒前
Qyyy发布了新的文献求助10
2秒前
2秒前
顺利安完成签到 ,获得积分10
2秒前
脂蛋白抗原完成签到,获得积分10
3秒前
小夜完成签到,获得积分10
3秒前
dzdzn完成签到 ,获得积分10
3秒前
吃人陈完成签到,获得积分10
3秒前
3秒前
青鱼完成签到,获得积分10
4秒前
lkl发布了新的文献求助10
4秒前
彩色的过客完成签到,获得积分10
5秒前
5秒前
十三应助期待未来的自己采纳,获得10
5秒前
5秒前
MX应助One采纳,获得20
5秒前
刘66发布了新的文献求助10
5秒前
skyleon完成签到,获得积分10
5秒前
庞伟泽完成签到,获得积分10
5秒前
科研通AI5应助198cui采纳,获得10
6秒前
开放的芷云完成签到,获得积分10
6秒前
222完成签到 ,获得积分10
6秒前
Anita完成签到,获得积分10
6秒前
赘婿应助liangx采纳,获得10
7秒前
8秒前
科研通AI5应助丹布里采纳,获得10
8秒前
8秒前
松松包完成签到,获得积分10
9秒前
在水一方应助啦啦啦采纳,获得10
9秒前
研友_LwlRen完成签到 ,获得积分10
9秒前
hope发布了新的文献求助10
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Material Weathering 400
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837799
求助须知:如何正确求助?哪些是违规求助? 3379844
关于积分的说明 10511402
捐赠科研通 3099477
什么是DOI,文献DOI怎么找? 1707127
邀请新用户注册赠送积分活动 821432
科研通“疑难数据库(出版商)”最低求助积分说明 772617