Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification

人工智能 对抗制 卷积神经网络 深度学习 半监督学习 计算机科学 正规化(语言学) 机器学习 利用 上下文图像分类 模式识别(心理学) 监督学习 图像(数学) 人工神经网络 计算机安全
作者
Xi Wang,Hao Chen,Huiling Xiang,Huangjing Lin,Xi Lin,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:70: 102010-102010 被引量:77
标识
DOI:10.1016/j.media.2021.102010
摘要

Convolutional neural networks have achieved prominent success on a variety of medical imaging tasks when a large amount of labeled training data is available. However, the acquisition of expert annotations for medical data is usually expensive and time-consuming, which poses a great challenge for supervised learning approaches. In this work, we proposed a novel semi-supervised deep learning method, i.e., deep virtual adversarial self-training with consistency regularization, for large-scale medical image classification. To effectively exploit useful information from unlabeled data, we leverage self-training and consistency regularization to harness the underlying knowledge, which helps improve the discrimination capability of training models. More concretely, the model first uses its prediction for pseudo-labeling on the weakly-augmented input image. A pseudo-label is kept only if the corresponding class probability is of high confidence. Then the model prediction is encouraged to be consistent with the strongly-augmented version of the same input image. To improve the robustness of the network against virtual adversarial perturbed input, we incorporate virtual adversarial training (VAT) on both labeled and unlabeled data into the course of training. Hence, the network is trained by minimizing a combination of three types of losses, including a standard supervised loss on labeled data, a consistency regularization loss on unlabeled data, and a VAT loss on both labeled and labeled data. We extensively evaluate the proposed semi-supervised deep learning methods on two challenging medical image classification tasks: breast cancer screening from ultrasound images and multi-class ophthalmic disease classification from optical coherence tomography B-scan images. Experimental results demonstrate that the proposed method outperforms both supervised baseline and other state-of-the-art methods by a large margin on all tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助殷少华采纳,获得10
1秒前
虚幻心情完成签到,获得积分20
1秒前
咋桌就咋桌应助高天雨采纳,获得150
2秒前
Margarate完成签到,获得积分10
3秒前
fazat完成签到,获得积分10
3秒前
4秒前
杜好好完成签到,获得积分0
4秒前
Raye发布了新的文献求助10
5秒前
5秒前
陈澜发布了新的文献求助10
8秒前
Young完成签到,获得积分10
8秒前
zjw发布了新的文献求助10
10秒前
10秒前
changl2023完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
殷少华完成签到,获得积分10
15秒前
15秒前
在水一方应助噜啦啦啦露采纳,获得10
16秒前
Nelson_Foo发布了新的文献求助10
16秒前
殷少华发布了新的文献求助10
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
达进发布了新的文献求助10
20秒前
20秒前
Hou完成签到 ,获得积分10
21秒前
21秒前
马李啸发布了新的文献求助10
21秒前
22秒前
发顶刊发布了新的文献求助10
22秒前
雨衣发布了新的文献求助10
23秒前
xun发布了新的文献求助10
25秒前
Chillym完成签到 ,获得积分10
27秒前
27秒前
Owen应助陈澜采纳,获得10
28秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870767
求助须知:如何正确求助?哪些是违规求助? 3412901
关于积分的说明 10681767
捐赠科研通 3137295
什么是DOI,文献DOI怎么找? 1730882
邀请新用户注册赠送积分活动 834426
科研通“疑难数据库(出版商)”最低求助积分说明 781154