清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning Solutions for Osteoporosis—A Review

骨质疏松症 检查表 机器学习 人工智能 医学 计算机科学 领域(数学) 心理学 病理 数学 认知心理学 纯数学
作者
Julien Smets,Enisa Shevroja,Thomas Hügle,William D. Leslie,Didier Hans
出处
期刊:Journal of Bone and Mineral Research [Oxford University Press]
卷期号:36 (5): 833-851 被引量:121
标识
DOI:10.1002/jbmr.4292
摘要

ABSTRACT Osteoporosis and its clinical consequence, bone fracture, is a multifactorial disease that has been the object of extensive research. Recent advances in machine learning (ML) have enabled the field of artificial intelligence (AI) to make impressive breakthroughs in complex data environments where human capacity to identify high-dimensional relationships is limited. The field of osteoporosis is one such domain, notwithstanding technical and clinical concerns regarding the application of ML methods. This qualitative review is intended to outline some of these concerns and to inform stakeholders interested in applying AI for improved management of osteoporosis. A systemic search in PubMed and Web of Science resulted in 89 studies for inclusion in the review. These covered one or more of four main areas in osteoporosis management: bone properties assessment (n = 13), osteoporosis classification (n = 34), fracture detection (n = 32), and risk prediction (n = 14). Reporting and methodological quality was determined by means of a 12-point checklist. In general, the studies were of moderate quality with a wide range (mode score 6, range 2 to 11). Major limitations were identified in a significant number of studies. Incomplete reporting, especially over model selection, inadequate splitting of data, and the low proportion of studies with external validation were among the most frequent problems. However, the use of images for opportunistic osteoporosis diagnosis or fracture detection emerged as a promising approach and one of the main contributions that ML could bring to the osteoporosis field. Efforts to develop ML-based models for identifying novel fracture risk factors and improving fracture prediction are additional promising lines of research. Some studies also offered insights into the potential for model-based decision-making. Finally, to avoid some of the common pitfalls, the use of standardized checklists in developing and sharing the results of ML models should be encouraged. © 2021 American Society for Bone and Mineral Research (ASBMR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白菜完成签到 ,获得积分10
9秒前
搜集达人应助钱念波采纳,获得30
30秒前
Hello应助铉莉采纳,获得10
31秒前
雪花完成签到 ,获得积分10
45秒前
mito完成签到,获得积分10
47秒前
clm完成签到 ,获得积分10
53秒前
Matthew完成签到 ,获得积分10
59秒前
jlwang完成签到,获得积分10
1分钟前
1分钟前
哭泣青烟完成签到 ,获得积分10
1分钟前
铉莉发布了新的文献求助10
1分钟前
DJ_Tokyo完成签到,获得积分10
1分钟前
钱念波发布了新的文献求助10
1分钟前
wendydqw完成签到 ,获得积分10
1分钟前
1分钟前
钱念波发布了新的文献求助30
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
natsu401完成签到 ,获得积分10
2分钟前
积极的乐瑶完成签到 ,获得积分10
2分钟前
wwww完成签到 ,获得积分10
3分钟前
小小完成签到 ,获得积分10
3分钟前
青山完成签到 ,获得积分10
3分钟前
科研狗的春天完成签到 ,获得积分10
4分钟前
彩色的芷容完成签到 ,获得积分10
4分钟前
wintel完成签到,获得积分10
4分钟前
852应助钱念波采纳,获得10
4分钟前
研友_Z7XY28完成签到 ,获得积分10
4分钟前
钱念波发布了新的文献求助10
4分钟前
小蘑菇完成签到 ,获得积分10
4分钟前
傻傻的芷巧完成签到 ,获得积分10
5分钟前
午后狂睡完成签到 ,获得积分10
5分钟前
Migrol完成签到,获得积分10
5分钟前
Raul完成签到 ,获得积分10
5分钟前
胡周瑜完成签到 ,获得积分10
5分钟前
新奇完成签到 ,获得积分10
5分钟前
AmyHu完成签到,获得积分10
6分钟前
IP190237完成签到,获得积分0
6分钟前
6分钟前
钱念波发布了新的文献求助10
6分钟前
yuehan完成签到 ,获得积分10
7分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798505
求助须知:如何正确求助?哪些是违规求助? 3344044
关于积分的说明 10318394
捐赠科研通 3060575
什么是DOI,文献DOI怎么找? 1679695
邀请新用户注册赠送积分活动 806746
科研通“疑难数据库(出版商)”最低求助积分说明 763340