Dwarf Mongoose Optimization Algorithm

猫鼬 觅食 饲料 生物 生态学 算法 计算机科学
作者
Jeffrey O. Agushaka,Absalom E. Ezugwu,Laith Abualigah
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:391: 114570-114570 被引量:733
标识
DOI:10.1016/j.cma.2022.114570
摘要

This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode of prey capture (feeding) has dramatically affected the mongooses’ social behavior and ecological adaptations to compensate for efficient family nutrition. The compensatory behavioral adaptations of the mongoose are prey size, space utilization, group size, and food provisioning. Three social groups of the dwarf mongoose are used in the proposed algorithm, the alpha group, babysitters, and the scout group. The family forage as a unit, and the alpha female initiates foraging, determines the foraging path, the distance covered, and the sleeping mounds. A certain number of the mongoose population (usually a mixture of males and females) serve as the babysitters. They remain with the young until the group returns at midday or evening. The babysitters are exchanged for the first to forage with the group (exploitation phase). The dwarf mongooses do not build a nest for their young; they move them from one sleeping mound to another and do not return to the previously foraged site. The dwarf mongoose has adopted a seminomadic way of life in a territory large enough to support the entire group (exploration phase). The nomadic behavior prevents overexploitation of a particular area. It also ensures exploration of the whole territory because no previously visited sleeping mound is returned. The performance of the proposed DMO algorithm is compared with seven other algorithms to show its effectiveness in terms of different performance metrics and statistics. In most cases, the near-optimal solutions achieved by the DMO are better than the best solutions obtained by the current state-of-the-art algorithms. Matlab codes of DMO are available at https://www.mathworks.com/matlabcentral/fileexchange/105125-dwarf-mongoose-optimization-algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cactus发布了新的文献求助10
1秒前
suiyi发布了新的文献求助10
1秒前
2秒前
志可刘发布了新的文献求助30
2秒前
LIULIU完成签到,获得积分10
2秒前
盛欢发布了新的文献求助10
2秒前
有魅力的白玉关注了科研通微信公众号
4秒前
浮游应助nxdjmzm采纳,获得10
4秒前
5秒前
5秒前
科研小贩发布了新的文献求助10
5秒前
合适的修洁完成签到,获得积分10
6秒前
Maestro发布了新的文献求助10
6秒前
诚心八宝粥完成签到,获得积分10
7秒前
7秒前
隐形曼青应助pomelo采纳,获得10
7秒前
huandiyu完成签到,获得积分10
7秒前
8秒前
8秒前
单薄紫菜发布了新的文献求助10
9秒前
9秒前
先锋完成签到 ,获得积分10
10秒前
10秒前
10秒前
whutyoyo完成签到,获得积分20
10秒前
顺利念双完成签到,获得积分10
10秒前
希望天下0贩的0应助郝誉采纳,获得10
10秒前
11秒前
11秒前
小小学神发布了新的文献求助10
11秒前
张嘉雯发布了新的文献求助10
11秒前
11秒前
阿可阿可完成签到,获得积分10
12秒前
12秒前
olivia完成签到,获得积分10
12秒前
12秒前
开朗馒头完成签到,获得积分10
12秒前
影子完成签到,获得积分10
12秒前
IchenNG发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071945
求助须知:如何正确求助?哪些是违规求助? 4292467
关于积分的说明 13374776
捐赠科研通 4113406
什么是DOI,文献DOI怎么找? 2252418
邀请新用户注册赠送积分活动 1257312
关于科研通互助平台的介绍 1190103