Dwarf Mongoose Optimization Algorithm

猫鼬 觅食 饲料 生物 生态学 算法 计算机科学
作者
Jeffrey O. Agushaka,Absalom E. Ezugwu,Laith Abualigah
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:391: 114570-114570 被引量:645
标识
DOI:10.1016/j.cma.2022.114570
摘要

This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode of prey capture (feeding) has dramatically affected the mongooses’ social behavior and ecological adaptations to compensate for efficient family nutrition. The compensatory behavioral adaptations of the mongoose are prey size, space utilization, group size, and food provisioning. Three social groups of the dwarf mongoose are used in the proposed algorithm, the alpha group, babysitters, and the scout group. The family forage as a unit, and the alpha female initiates foraging, determines the foraging path, the distance covered, and the sleeping mounds. A certain number of the mongoose population (usually a mixture of males and females) serve as the babysitters. They remain with the young until the group returns at midday or evening. The babysitters are exchanged for the first to forage with the group (exploitation phase). The dwarf mongooses do not build a nest for their young; they move them from one sleeping mound to another and do not return to the previously foraged site. The dwarf mongoose has adopted a seminomadic way of life in a territory large enough to support the entire group (exploration phase). The nomadic behavior prevents overexploitation of a particular area. It also ensures exploration of the whole territory because no previously visited sleeping mound is returned. The performance of the proposed DMO algorithm is compared with seven other algorithms to show its effectiveness in terms of different performance metrics and statistics. In most cases, the near-optimal solutions achieved by the DMO are better than the best solutions obtained by the current state-of-the-art algorithms. Matlab codes of DMO are available at https://www.mathworks.com/matlabcentral/fileexchange/105125-dwarf-mongoose-optimization-algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拓小八完成签到,获得积分10
2秒前
爱笑子默完成签到,获得积分10
3秒前
游01完成签到 ,获得积分10
5秒前
zhang完成签到 ,获得积分10
5秒前
群山完成签到 ,获得积分10
6秒前
要笑cc完成签到,获得积分10
7秒前
不怕考试的赵无敌完成签到 ,获得积分10
9秒前
宣宣宣0733完成签到,获得积分10
9秒前
arsenal完成签到 ,获得积分10
10秒前
胡质斌完成签到,获得积分10
11秒前
16秒前
Johnlian完成签到 ,获得积分10
18秒前
我很好完成签到 ,获得积分10
22秒前
黄天完成签到 ,获得积分10
23秒前
30秒前
犹豫翠萱完成签到 ,获得积分10
31秒前
35秒前
等于几都行完成签到 ,获得积分10
36秒前
elsa622完成签到 ,获得积分10
40秒前
xj_yjl完成签到,获得积分10
42秒前
傻傻的哈密瓜完成签到,获得积分10
42秒前
111完成签到,获得积分10
43秒前
baoxiaozhai完成签到 ,获得积分10
44秒前
玼桃树完成签到 ,获得积分10
45秒前
onevip完成签到,获得积分0
54秒前
qiancib202完成签到,获得积分10
56秒前
huamuamber发布了新的文献求助30
1分钟前
stop here完成签到,获得积分10
1分钟前
SunLijia完成签到 ,获得积分10
1分钟前
1分钟前
乐观海云完成签到 ,获得积分10
1分钟前
beleve完成签到,获得积分10
1分钟前
baroque完成签到 ,获得积分10
1分钟前
yi完成签到,获得积分10
1分钟前
Yunis完成签到 ,获得积分10
1分钟前
行云流水完成签到,获得积分10
1分钟前
隐形曼青应助baroque采纳,获得10
1分钟前
英勇海完成签到 ,获得积分10
1分钟前
我要读博士完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811747
求助须知:如何正确求助?哪些是违规求助? 3356021
关于积分的说明 10379150
捐赠科研通 3072972
什么是DOI,文献DOI怎么找? 1688146
邀请新用户注册赠送积分活动 811860
科研通“疑难数据库(出版商)”最低求助积分说明 766893