亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dwarf Mongoose Optimization Algorithm

猫鼬 觅食 饲料 生物 生态学 算法 计算机科学
作者
Jeffrey O. Agushaka,Absalom E. Ezugwu,Laith Abualigah
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:391: 114570-114570 被引量:733
标识
DOI:10.1016/j.cma.2022.114570
摘要

This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode of prey capture (feeding) has dramatically affected the mongooses’ social behavior and ecological adaptations to compensate for efficient family nutrition. The compensatory behavioral adaptations of the mongoose are prey size, space utilization, group size, and food provisioning. Three social groups of the dwarf mongoose are used in the proposed algorithm, the alpha group, babysitters, and the scout group. The family forage as a unit, and the alpha female initiates foraging, determines the foraging path, the distance covered, and the sleeping mounds. A certain number of the mongoose population (usually a mixture of males and females) serve as the babysitters. They remain with the young until the group returns at midday or evening. The babysitters are exchanged for the first to forage with the group (exploitation phase). The dwarf mongooses do not build a nest for their young; they move them from one sleeping mound to another and do not return to the previously foraged site. The dwarf mongoose has adopted a seminomadic way of life in a territory large enough to support the entire group (exploration phase). The nomadic behavior prevents overexploitation of a particular area. It also ensures exploration of the whole territory because no previously visited sleeping mound is returned. The performance of the proposed DMO algorithm is compared with seven other algorithms to show its effectiveness in terms of different performance metrics and statistics. In most cases, the near-optimal solutions achieved by the DMO are better than the best solutions obtained by the current state-of-the-art algorithms. Matlab codes of DMO are available at https://www.mathworks.com/matlabcentral/fileexchange/105125-dwarf-mongoose-optimization-algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悄悄完成签到,获得积分10
2秒前
英姑应助科研通管家采纳,获得10
21秒前
WK完成签到,获得积分10
24秒前
mrjohn完成签到,获得积分10
30秒前
wuran发布了新的文献求助10
43秒前
量子星尘发布了新的文献求助10
44秒前
1分钟前
1分钟前
1分钟前
你的qq发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
cc应助科研通管家采纳,获得10
2分钟前
珍珠火龙果完成签到 ,获得积分10
2分钟前
2分钟前
大喵发布了新的文献求助10
2分钟前
2分钟前
你的qq完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
SciGPT应助Hayat采纳,获得30
3分钟前
小二郎应助你的qq采纳,获得10
3分钟前
3分钟前
恒牙完成签到 ,获得积分10
4分钟前
4分钟前
科研韭菜完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
滴滴滴完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
Hayat发布了新的文献求助30
5分钟前
量子星尘发布了新的文献求助10
5分钟前
cc完成签到 ,获得积分20
6分钟前
6分钟前
6分钟前
量子星尘发布了新的文献求助10
7分钟前
番茄黄瓜芝士片完成签到 ,获得积分10
7分钟前
wuju完成签到,获得积分10
7分钟前
8分钟前
英俊的铭应助科研通管家采纳,获得10
8分钟前
完美世界应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4316849
求助须知:如何正确求助?哪些是违规求助? 3835202
关于积分的说明 11994979
捐赠科研通 3475401
什么是DOI,文献DOI怎么找? 1906332
邀请新用户注册赠送积分活动 952386
科研通“疑难数据库(出版商)”最低求助积分说明 853866