已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A short-term flood prediction based on spatial deep learning network: A case study for Xi County, China

大洪水 中国 期限(时间) 地质学 环境科学 水文学(农业) 气象学 地理 岩土工程 量子力学 物理 考古
作者
Chen Chen,Jiange Jiang,Zhan Liao,Yang Zhou,Hao Wang,Qingqi Pei
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:607: 127535-127535 被引量:78
标识
DOI:10.1016/j.jhydrol.2022.127535
摘要

• A Convolutional Long Short Term Memory Network is used to predict the flood events based on deep learning techniques. • The spatial and time characteristics of floods in China are well modeled to overcome the shortcomings generated by merely relying on time-series analysis. • Different from traditional methods, the hydrological area is gridded into different watersheds for future processing using image processing methods. Floods cause substantial damage across the world every year. Accurate and timely prediction of floods can significantly minimize the loss of life and property. Recently, numerous machine learning models have been used for flood prediction, showing that their performance is preferable to traditional statistical models. However, the existing models neglect the spatial features of floods, which drive flood generation and concentration. In this paper, the area of interest is divided into grids based on longitude and latitude, and the rainfall and discharge collected by stations are combined into tensors according to station coordinates. Different from one-dimensional time series, our input feature is a two-dimensional time series with spatial information. Hence, combining a Convolutional Neural Network (CNN) with a Long Short Term Memory Network (LSTM), we propose the convolution LSTM (ConvLSTM) to extract spatiotemporal features of hydrological information. The methodology is demonstrated using the hydrological data collected at the Xi County stations, located on the Huai River in Henan Province, China. Numerical results indicate that the relative error of arrival time is within 30%, and the relative error of peak discharge is within 20%, satisfying the 2005 Chinese Water Resource Standard on flood prediction permit error. The experiments also show that the ConvLSTM outperforms the recent models in terms of flood arrival time and peak discharge, thereby proving a promising alternative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
半枝桃完成签到 ,获得积分10
4秒前
yyt发布了新的文献求助10
5秒前
10秒前
ZTLlele完成签到 ,获得积分10
12秒前
13秒前
天天快乐应助Carrots采纳,获得10
14秒前
18秒前
费费完成签到,获得积分10
18秒前
bkagyin应助gaint采纳,获得10
21秒前
科研通AI5应助小二采纳,获得10
22秒前
费费发布了新的文献求助10
23秒前
Umair完成签到,获得积分10
23秒前
长岁完成签到 ,获得积分10
24秒前
24秒前
leeSongha完成签到 ,获得积分10
25秒前
科研通AI5应助Carrots采纳,获得10
25秒前
Goblin完成签到 ,获得积分10
25秒前
yy完成签到 ,获得积分10
25秒前
26秒前
俊逸的追命完成签到,获得积分10
26秒前
852应助SheepIce采纳,获得10
26秒前
科研通AI2S应助安静牛排采纳,获得10
27秒前
光亮藏鸟发布了新的文献求助10
29秒前
可靠的雪青完成签到 ,获得积分10
30秒前
30秒前
30秒前
31秒前
山橘月发布了新的文献求助10
32秒前
烟花应助archer01采纳,获得10
32秒前
家家完成签到 ,获得积分10
33秒前
34秒前
吴嘉俊完成签到 ,获得积分10
35秒前
Umair发布了新的文献求助30
36秒前
36秒前
36秒前
忧虑的初晴应助lvsehx采纳,获得10
36秒前
团宝妞宝完成签到,获得积分10
37秒前
shuishui发布了新的文献求助10
38秒前
Aulalala完成签到,获得积分10
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784753
求助须知:如何正确求助?哪些是违规求助? 3329967
关于积分的说明 10243939
捐赠科研通 3045299
什么是DOI,文献DOI怎么找? 1671603
邀请新用户注册赠送积分活动 800512
科研通“疑难数据库(出版商)”最低求助积分说明 759444