A short-term flood prediction based on spatial deep learning network: A case study for Xi County, China

大洪水 中国 期限(时间) 地质学 环境科学 水文学(农业) 气象学 地理 岩土工程 量子力学 物理 考古
作者
Chen Chen,Jiange Jiang,Zhan Liao,Yang Zhou,Hao Wang,Qingqi Pei
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:607: 127535-127535 被引量:78
标识
DOI:10.1016/j.jhydrol.2022.127535
摘要

• A Convolutional Long Short Term Memory Network is used to predict the flood events based on deep learning techniques. • The spatial and time characteristics of floods in China are well modeled to overcome the shortcomings generated by merely relying on time-series analysis. • Different from traditional methods, the hydrological area is gridded into different watersheds for future processing using image processing methods. Floods cause substantial damage across the world every year. Accurate and timely prediction of floods can significantly minimize the loss of life and property. Recently, numerous machine learning models have been used for flood prediction, showing that their performance is preferable to traditional statistical models. However, the existing models neglect the spatial features of floods, which drive flood generation and concentration. In this paper, the area of interest is divided into grids based on longitude and latitude, and the rainfall and discharge collected by stations are combined into tensors according to station coordinates. Different from one-dimensional time series, our input feature is a two-dimensional time series with spatial information. Hence, combining a Convolutional Neural Network (CNN) with a Long Short Term Memory Network (LSTM), we propose the convolution LSTM (ConvLSTM) to extract spatiotemporal features of hydrological information. The methodology is demonstrated using the hydrological data collected at the Xi County stations, located on the Huai River in Henan Province, China. Numerical results indicate that the relative error of arrival time is within 30%, and the relative error of peak discharge is within 20%, satisfying the 2005 Chinese Water Resource Standard on flood prediction permit error. The experiments also show that the ConvLSTM outperforms the recent models in terms of flood arrival time and peak discharge, thereby proving a promising alternative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuhuayaxi完成签到,获得积分10
5秒前
12秒前
JXDYYZK完成签到,获得积分10
13秒前
桐桐应助577采纳,获得10
13秒前
龙飞凤舞完成签到,获得积分0
16秒前
我先睡了发布了新的文献求助30
16秒前
111111完成签到,获得积分10
18秒前
淼淼完成签到 ,获得积分10
19秒前
科研通AI6.2应助XS_QI采纳,获得10
27秒前
gngxnh完成签到 ,获得积分10
27秒前
从容成危完成签到 ,获得积分10
27秒前
31秒前
31秒前
31秒前
31秒前
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
无极微光应助科研通管家采纳,获得20
31秒前
顾矜应助科研通管家采纳,获得10
31秒前
31秒前
大模型应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得10
31秒前
汝桢完成签到 ,获得积分10
33秒前
33秒前
Presta发布了新的文献求助10
38秒前
哭泣凝竹完成签到 ,获得积分10
43秒前
43秒前
Nina完成签到 ,获得积分10
45秒前
666应助达到采纳,获得10
45秒前
优雅的WAN完成签到 ,获得积分10
45秒前
曾经友容完成签到 ,获得积分10
45秒前
47秒前
61Cu发布了新的文献求助10
48秒前
48秒前
NSS完成签到,获得积分10
51秒前
宋微完成签到 ,获得积分10
52秒前
李爱国应助整齐的大开采纳,获得10
53秒前
53秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847454
求助须知:如何正确求助?哪些是违规求助? 6226150
关于积分的说明 15620180
捐赠科研通 4964111
什么是DOI,文献DOI怎么找? 2676433
邀请新用户注册赠送积分活动 1620988
关于科研通互助平台的介绍 1576924