Automated detection of emotional and cognitive engagement in MOOC discussions to predict learning achievement

认知 心理学 学生参与度 认知心理学 数学教育 神经科学
作者
Sannyuya Liu,Shiqi Liu,Zhi Liu,Xian Peng,Zongkai Yang
出处
期刊:Computers & education [Elsevier BV]
卷期号:181: 104461-104461 被引量:125
标识
DOI:10.1016/j.compedu.2022.104461
摘要

In the MOOC forum discussions, emotional and cognitive engagement are two prominent aspects of learning engagement. Moreover, emotional and cognitive engagement have an interactive relationship and can jointly predict learning achievement. However, these interwoven relationships have not been thoroughly explored. Furthermore, the limitations on detection methods for emotional and cognitive engagement have hindered the practice and theory progress. This study aimed to develop a novel text classification model to automatically detect emotional and cognitive engagement and investigate their complex relationships with achievement, which are beneficial for improving learning engagement and historically low completion rates of MOOCs. Firstly, this study proposed a robust and interpretable NLP model called the bidirectional encoder representation from the transformers-convolutional neural network (BERT-CNN). Compared with models in previous studies, it improved the F1 values of emotional and cognitive engagement recognition tasks by 10% and 8%, respectively. Secondly, this study used BERT-CNN to analyze 8867 learners’ discussions in a MOOC forum. Structural equation modeling indicated that emotional and cognitive engagement have an interactive relationship and a combined effect on learning achievement. Specifically, positive and confused emotions contributed more to higher-level cognition than negative emotions. Co-occurring emotion and cognition indicators jointly predicted learning achievement with higher reliability. In summary, this study has significant methodological implications for the automated measurement of emotional and cognitive engagement. Moreover, the study revealed the dominant role of emotional engagement on cognitive engagement and provided suggestions for improving MOOC learners' achievement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zht发布了新的文献求助10
2秒前
2秒前
馒头应助jgpiao采纳,获得10
3秒前
关关过完成签到,获得积分10
5秒前
顺利一德发布了新的文献求助10
6秒前
志灰灰完成签到,获得积分10
7秒前
友好的翅膀完成签到,获得积分10
7秒前
8秒前
zimu012发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
绝望的文盲关注了科研通微信公众号
14秒前
breeze完成签到,获得积分10
16秒前
16秒前
Lucas应助读书的时候采纳,获得10
17秒前
张教授发布了新的文献求助10
18秒前
18秒前
WZJ发布了新的文献求助50
19秒前
小马甲应助额我认为采纳,获得10
21秒前
asdsfz发布了新的文献求助10
21秒前
kahlilgibranugm完成签到,获得积分20
21秒前
qjw发布了新的文献求助10
22秒前
jobs发布了新的文献求助10
22秒前
26秒前
27秒前
27秒前
打打应助qjw采纳,获得10
27秒前
capybara完成签到,获得积分10
29秒前
31秒前
小黄找文献完成签到,获得积分10
31秒前
xiaoyu123发布了新的文献求助10
32秒前
顺利一德完成签到,获得积分20
33秒前
33秒前
34秒前
英俊的铭应助义气钻石采纳,获得10
34秒前
大个应助读书的时候采纳,获得10
35秒前
song发布了新的文献求助10
36秒前
36秒前
大模型应助热情烧鹅采纳,获得10
37秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4094311
求助须知:如何正确求助?哪些是违规求助? 3632685
关于积分的说明 11514364
捐赠科研通 3343395
什么是DOI,文献DOI怎么找? 1837570
邀请新用户注册赠送积分活动 905233
科研通“疑难数据库(出版商)”最低求助积分说明 823041