Automated detection of emotional and cognitive engagement in MOOC discussions to predict learning achievement

认知 心理学 学生参与度 认知心理学 数学教育 神经科学
作者
Sannyuya Liu,Shiqi Liu,Zhi Liu,Xian Peng,Zongkai Yang
出处
期刊:Computers & education [Elsevier BV]
卷期号:181: 104461-104461 被引量:125
标识
DOI:10.1016/j.compedu.2022.104461
摘要

In the MOOC forum discussions, emotional and cognitive engagement are two prominent aspects of learning engagement. Moreover, emotional and cognitive engagement have an interactive relationship and can jointly predict learning achievement. However, these interwoven relationships have not been thoroughly explored. Furthermore, the limitations on detection methods for emotional and cognitive engagement have hindered the practice and theory progress. This study aimed to develop a novel text classification model to automatically detect emotional and cognitive engagement and investigate their complex relationships with achievement, which are beneficial for improving learning engagement and historically low completion rates of MOOCs. Firstly, this study proposed a robust and interpretable NLP model called the bidirectional encoder representation from the transformers-convolutional neural network (BERT-CNN). Compared with models in previous studies, it improved the F1 values of emotional and cognitive engagement recognition tasks by 10% and 8%, respectively. Secondly, this study used BERT-CNN to analyze 8867 learners’ discussions in a MOOC forum. Structural equation modeling indicated that emotional and cognitive engagement have an interactive relationship and a combined effect on learning achievement. Specifically, positive and confused emotions contributed more to higher-level cognition than negative emotions. Co-occurring emotion and cognition indicators jointly predicted learning achievement with higher reliability. In summary, this study has significant methodological implications for the automated measurement of emotional and cognitive engagement. Moreover, the study revealed the dominant role of emotional engagement on cognitive engagement and provided suggestions for improving MOOC learners' achievement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助laopei2001采纳,获得10
1秒前
小蘑菇应助fanstic330采纳,获得10
1秒前
VL_3发布了新的文献求助30
1秒前
虚幻人完成签到,获得积分10
1秒前
张玺关注了科研通微信公众号
1秒前
2秒前
2秒前
bkagyin应助千思采纳,获得10
2秒前
迷路中的骑手完成签到,获得积分10
2秒前
3秒前
5秒前
6秒前
英姑应助勤恳凡之采纳,获得10
6秒前
6秒前
7秒前
7秒前
ZCY发布了新的文献求助10
10秒前
wyx发布了新的文献求助10
11秒前
11秒前
laopei2001发布了新的文献求助10
12秒前
13秒前
zxt完成签到 ,获得积分10
13秒前
chipo完成签到,获得积分10
14秒前
15秒前
彭于彦祖应助ly采纳,获得20
15秒前
16秒前
万能图书馆应助wyx采纳,获得10
16秒前
小呆鹿发布了新的文献求助30
16秒前
laopei2001完成签到,获得积分10
18秒前
张玺发布了新的文献求助50
19秒前
21秒前
21秒前
轻松的恋风完成签到,获得积分10
21秒前
小呆鹿完成签到,获得积分10
22秒前
22秒前
光亮的夜雪完成签到,获得积分10
23秒前
23秒前
jenningseastera应助JUGG采纳,获得10
25秒前
星辰大海应助伶俐的鞋子采纳,获得10
26秒前
胡志飞发布了新的文献求助10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787285
求助须知:如何正确求助?哪些是违规求助? 3332896
关于积分的说明 10258130
捐赠科研通 3048309
什么是DOI,文献DOI怎么找? 1673086
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760303