Deep Learning for Fully Automated Prediction of Overall Survival in Patients Undergoing Resection for Pancreatic Cancer

医学 胰腺癌 危险系数 内科学 生物标志物 肿瘤科 混淆 成像生物标志物 比例危险模型 放化疗 回顾性队列研究 置信区间 癌症 放射科 磁共振成像 生物化学 化学
作者
Jiawen Yao,Kai Cao,Yang Hou,Jian Zhou,Yingda Xia,Isabella Nogues,Qike Song,Hui Jiang,Xianghua Ye,Jianping Lu,Gang Jin,Hong Lu,Chuanmiao Xie,Rong Zhang,Jing Xiao,Zaiyi Liu,Feng Gao,Yafei Qi,Xuezhou Li,Yang Zheng
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:278 (1): e68-e79 被引量:25
标识
DOI:10.1097/sla.0000000000005465
摘要

Objective: To develop an imaging-derived biomarker for prediction of overall survival (OS) of pancreatic cancer by analyzing preoperative multiphase contrast-enhanced computed topography (CECT) using deep learning. Background: Exploiting prognostic biomarkers for guiding neoadjuvant and adjuvant treatment decisions may potentially improve outcomes in patients with resectable pancreatic cancer. Methods: This multicenter, retrospective study included 1516 patients with resected pancreatic ductal adenocarcinoma (PDAC) from 5 centers located in China. The discovery cohort (n=763), which included preoperative multiphase CECT scans and OS data from 2 centers, was used to construct a fully automated imaging-derived prognostic biomarker—DeepCT-PDAC—by training scalable deep segmentation and prognostic models (via self-learning) to comprehensively model the tumor-anatomy spatial relations and their appearance dynamics in multiphase CECT for OS prediction. The marker was independently tested using internal (n=574) and external validation cohorts (n=179, 3 centers) to evaluate its performance, robustness, and clinical usefulness. Results: Preoperatively, DeepCT-PDAC was the strongest predictor of OS in both internal and external validation cohorts [hazard ratio (HR) for high versus low risk 2.03, 95% confidence interval (CI): 1.50–2.75; HR: 2.47, CI: 1.35–4.53] in a multivariable analysis. Postoperatively, DeepCT-PDAC remained significant in both cohorts (HR: 2.49, CI: 1.89–3.28; HR: 2.15, CI: 1.14–4.05) after adjustment for potential confounders. For margin-negative patients, adjuvant chemoradiotherapy was associated with improved OS in the subgroup with DeepCT-PDAC low risk (HR: 0.35, CI: 0.19–0.64), but did not affect OS in the subgroup with high risk. Conclusions: Deep learning-based CT imaging-derived biomarker enabled the objective and unbiased OS prediction for patients with resectable PDAC. This marker is applicable across hospitals, imaging protocols, and treatments, and has the potential to tailor neoadjuvant and adjuvant treatments at the individual level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谨慎采白发布了新的文献求助30
1秒前
GY7完成签到 ,获得积分10
1秒前
灵阳完成签到,获得积分10
2秒前
鸭鸭完成签到,获得积分10
2秒前
小杭76应助Smithjiang采纳,获得10
3秒前
4秒前
5秒前
笑点低的初兰完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
Lucas应助舒心的芝麻采纳,获得10
6秒前
6秒前
焚琴涮羊肉完成签到,获得积分10
6秒前
muyu完成签到,获得积分10
7秒前
8秒前
科目三应助yy采纳,获得10
9秒前
碧萱发布了新的文献求助10
9秒前
夏枯完成签到,获得积分20
9秒前
9秒前
9秒前
Jennie完成签到,获得积分10
9秒前
10秒前
nenoaowu发布了新的文献求助10
11秒前
12秒前
dove发布了新的文献求助10
12秒前
guyxlous发布了新的文献求助30
12秒前
lx01发布了新的文献求助50
12秒前
13秒前
13秒前
1111chen完成签到 ,获得积分10
13秒前
好蓝发布了新的文献求助10
14秒前
Noblesj发布了新的文献求助10
14秒前
14秒前
bei完成签到,获得积分10
14秒前
15秒前
zhizhi完成签到 ,获得积分10
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
研友_8Y2DXL完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263504
求助须知:如何正确求助?哪些是违规求助? 4424042
关于积分的说明 13771651
捐赠科研通 4299063
什么是DOI,文献DOI怎么找? 2358884
邀请新用户注册赠送积分活动 1355136
关于科研通互助平台的介绍 1316351