亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survey: Optimization and applications of evidence fusion algorithm based on Dempster–Shafer theory

登普斯特-沙弗理论 计算机科学 传感器融合 人工智能 集合(抽象数据类型) 算法 机器学习 数据挖掘 程序设计语言
作者
Kaiyi Zhao,Li Li,Zeqiu Chen,Ruizhi Sun,Gang Yuan,Jiayao Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:124: 109075-109075 被引量:85
标识
DOI:10.1016/j.asoc.2022.109075
摘要

Since Dempster–Shafer evidence theory was proposed, it has been widely and successfully used in many fields including risk analysis, fault diagnosis, wireless sensor networks, health prognosis, image processing, and target tracking, etc. However, many counter-intuitive results of data fusion will be obtained when evidence fused is highly conflicting. So far, this is still an open issue. To address this issue, many methods have been proposed, but they have not been comprehensively summarized in recent years. In this paper, a detailed survey is set forth about the optimization and application of evidence fusion algorithms based on Dempster–Shafer theory. Firstly, the principle of Dempster–Shafer evidence theory is introduced comprehensively. Then, the existing researches on modifying combination rule and pre-processed pieces of evidence to solve the counter-intuitive problem are reviewed in detail. Next, the performance of these studies is demonstrated, deeply analyzed, and discussed through experiments on general examples. And finally, the application of Dempster–Shafer evidence theory in different fields is critically summarized. What is more, analysis of the current status and the development trend of the research on evidence theory are concluded, which can provide a more comprehensive understanding of the development of the Dempster–Shafer evidence theory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wlei完成签到,获得积分10
1秒前
张童鞋完成签到 ,获得积分10
1秒前
慕青应助bjx采纳,获得10
4秒前
6秒前
英俊的铭应助Eric采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
17秒前
铁臂阿童木完成签到,获得积分10
22秒前
搜集达人应助清修采纳,获得10
41秒前
43秒前
46秒前
48秒前
YangSihan发布了新的文献求助10
48秒前
Eric发布了新的文献求助10
51秒前
54秒前
姜凉发布了新的文献求助30
59秒前
科研通AI5应助YangSihan采纳,获得10
59秒前
姜凉完成签到,获得积分10
1分钟前
黄金天下完成签到,获得积分10
1分钟前
1分钟前
Aaron完成签到 ,获得积分0
1分钟前
zqq完成签到,获得积分0
1分钟前
一袋薯片发布了新的文献求助10
1分钟前
1分钟前
一袋薯片完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Saven发布了新的文献求助10
1分钟前
郑林完成签到,获得积分20
1分钟前
清修发布了新的文献求助10
1分钟前
1分钟前
郑林发布了新的文献求助10
1分钟前
哈哈完成签到,获得积分20
2分钟前
xxxx完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
mikija完成签到,获得积分20
2分钟前
mikija发布了新的文献求助30
2分钟前
完美世界应助清修采纳,获得10
3分钟前
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244132
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483