亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

[Nontargeted lipidomic analysis of sera from sepsis patients based on ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry].

脂类学 重复性 质谱法 色谱法 代谢组学 液相色谱-质谱法 败血症 化学 医学 内科学 生物化学
作者
Shan Wang,Jifang Liang,Hai-Peng Shi,Yanmei Xia,Jing Li,Wenjing Wu,Hongxiong Wang,Weidong Wu
出处
期刊:PubMed 卷期号:34 (4): 346-351 被引量:2
标识
DOI:10.3760/cma.j.cn121430-20210612-00875
摘要

To analyze the changes of serum lipidomics in patients with sepsis and healthy controls, search for the differences of lipid metabolites, and reveal the changes of lipidomics in the process of sepsis.A prospective observational study was conducted. From September 2019 to April 2020, morning blood samples of upper extremity superficial veins were collected from 30 patients with definite sepsis diagnosed in intensive care unit (ICU) of Shanxi Bethune Hospital and 30 age-matched healthy subjects during the same period. Serum lipid metabolites were analyzed by ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS), and the quality control samples were analyzed by base peak spectroscopy (BPC) and verified experimental repetition. Student t-test and fold change (FC) were used for screening significant differences in lipid metabolites and determining their expression changes. Principal component analysis (PCA) and orthogonal projectionto latent structure discriminant analysis (OPLS-DA) were used to determine the entire allocation of experimental groups apiece, access the quality of being near to the true value of model, and screen the differential lipid metabolites with variable importance of projection (VIP). Finally, Metabo Analyst platform database was used to analyze lipid molecular metabolic pathways.BPC results showed that the experimental repeatability was good and the experimental data was reliable. The main parameter model interpretation rate of PCA model R2X = 0.511, indicating that the model was reliable. The main parameter model interpretation rate of OPLS-DA model R2Y = 0.954, Q2 = 0.913, indicating that the model was stable and reliable. With FC > 2.0 or FC < 0.5, P < 0.05, a total of 72 differential lipid metabolites were obtained based on VIP > 1. Based on Metabo Analyst 5.0, 24 distinguishable lipid metabolites were identified including 8 phosphatidylethanolamine (PE), 7 lysophosphatidylcholine (LPC), 6 phosphatidylcholine (PC), 2 lysophosphatidylethanolamine (LPE) and 1 phosphatidylserine (PS). Compared with healthy volunteers, the lipid molecules expression proved down-regulated in most sepsis patients, including PC, LPC, LPE, and some PE, while some PE and PS were up-regulated, which was mainly related to the PE (18:0p/20:4), PC (16:0/16:0) and LPC (18:1) metabolic pathways in glycerophospholipids.There are significant differences in lipid metabolites between the sera of sepsis patients and healthy volunteers. PE (18:0p/20:4), PC (16:0/16:0) and LPC (18:1) may be new targets for sepsis prediction and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅者如西完成签到,获得积分10
7秒前
8秒前
13秒前
充电宝应助eric采纳,获得10
15秒前
YifanWang完成签到,获得积分0
18秒前
小茉完成签到,获得积分10
18秒前
丘比特应助金乌采纳,获得10
19秒前
21秒前
Luka应助科研通管家采纳,获得10
24秒前
24秒前
Luka应助科研通管家采纳,获得10
24秒前
JSEILWQ完成签到 ,获得积分10
25秒前
27秒前
研友_8RyzBZ完成签到,获得积分20
28秒前
乐乐应助anguo采纳,获得10
30秒前
称心的高丽完成签到 ,获得积分10
31秒前
32秒前
金乌发布了新的文献求助10
33秒前
33秒前
40秒前
42秒前
46秒前
可靠的咖啡完成签到,获得积分10
46秒前
vchen0621发布了新的文献求助10
48秒前
耶耶完成签到 ,获得积分10
49秒前
51秒前
1分钟前
赘婿应助yy采纳,获得10
1分钟前
li完成签到 ,获得积分10
1分钟前
jjjj发布了新的文献求助10
1分钟前
三井库里发布了新的文献求助10
1分钟前
1分钟前
1分钟前
跳跃毒娘发布了新的文献求助10
1分钟前
英俊的铭应助三井库里采纳,获得10
1分钟前
1分钟前
1分钟前
慕新完成签到,获得积分10
1分钟前
1分钟前
季禹发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4717657
求助须知:如何正确求助?哪些是违规求助? 4079359
关于积分的说明 12615531
捐赠科研通 3783074
什么是DOI,文献DOI怎么找? 2089738
邀请新用户注册赠送积分活动 1115766
科研通“疑难数据库(出版商)”最低求助积分说明 992952