Simulation and sensor data fusion for machine learning application

计算机科学 机器学习 传感器融合 人工智能 过程(计算) 数据挖掘 数据集 数据建模 集合(抽象数据类型) 领域知识 数据库 程序设计语言 操作系统
作者
Amal Saadallah,Felix Finkeldey,Jens Buß,Katharina Morik,Petra Wiederkehr,W. Rhode
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:52: 101600-101600 被引量:13
标识
DOI:10.1016/j.aei.2022.101600
摘要

The performance of machine learning algorithms depends to a large extent on the amount and the quality of data available for training. Simulations are most often used as test-beds for assessing the performance of trained models on simulated environment before deployment in real-world. They can also be used for data annotation, i.e, assigning labels to observed data, providing thus background knowledge for domain experts. We want to integrate this knowledge into the machine learning process and, at the same time, use the simulation as an additional data source. Therefore, we present a framework that allows for the combination of real-world observations and simulation data at two levels, namely the data or the model level. At the data level, observations and simulation data are integrated to form an enriched data set for learning. At the model level, the models learned from observed and simulated data separately are combined using an ensemble technique. Based on the trade-off between model bias and variance, an automatic selection of the appropriate fusion level is proposed. Our framework is validated using two case studies of very different types. The first is an industry 4.0 use case consisting of monitoring a milling process in real-time. The second is an application in astroparticle physics for background suppression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助yanlinwen采纳,获得10
刚刚
刚刚
开心的若烟完成签到,获得积分10
1秒前
Zzz完成签到,获得积分10
2秒前
天天快乐应助22采纳,获得10
2秒前
Minnie123关注了科研通微信公众号
3秒前
诺诺完成签到 ,获得积分10
3秒前
mio发布了新的文献求助50
3秒前
勤劳的筝完成签到,获得积分20
4秒前
magiczhu完成签到,获得积分10
4秒前
8秒前
斯文败类应助金鱼采纳,获得10
10秒前
11秒前
石大头完成签到,获得积分10
11秒前
12秒前
Nathan完成签到,获得积分0
12秒前
小符发布了新的文献求助10
13秒前
13秒前
14秒前
Minnie123发布了新的文献求助10
15秒前
16秒前
大有阳光完成签到,获得积分10
17秒前
22发布了新的文献求助10
17秒前
石大头发布了新的文献求助10
18秒前
18秒前
lizhiqian2024发布了新的文献求助10
20秒前
ccmxigua发布了新的文献求助30
21秒前
gezid完成签到 ,获得积分10
22秒前
23秒前
雪梨发布了新的文献求助10
23秒前
23秒前
23秒前
科研通AI5应助过儿采纳,获得10
25秒前
缥缈青烟完成签到,获得积分10
27秒前
initial发布了新的文献求助10
28秒前
28秒前
28秒前
金鱼发布了新的文献求助10
28秒前
29秒前
丘比特应助科研通管家采纳,获得10
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802551
求助须知:如何正确求助?哪些是违规求助? 3348237
关于积分的说明 10337188
捐赠科研通 3064171
什么是DOI,文献DOI怎么找? 1682449
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010