数学
分布(数学)
平稳分布
竞赛(生物学)
非线性系统
功能(生物学)
组合数学
数学分析
物理
统计
量子力学
生态学
进化生物学
生物
马尔可夫链
作者
Baoquan Zhou,Yucong Dai
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2022-04-24
卷期号:28 (1): 294-294
被引量:4
标识
DOI:10.3934/dcdsb.2022078
摘要
<p style='text-indent:20px;'>In this paper, we examine an n-species Lotka-Volterra competition system with general infinite distributed delays and nonlinear perturbations. The stochastic boundedness and extinction are first studied. Then we propose a new <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula>-stochastic threshold method to establish sufficient conditions for the existence of stationary distribution <inline-formula><tex-math id="M2">\begin{document}$ \ell(\cdot) $\end{document}</tex-math></inline-formula>. By solving the corresponding Fokker–Planck equation, we derive the approximate expression of the distribution <inline-formula><tex-math id="M3">\begin{document}$ \ell(\cdot) $\end{document}</tex-math></inline-formula> around its quasi-positive equilibrium. For the stochastic system with periodic coefficients, we use the <inline-formula><tex-math id="M4">\begin{document}$ p $\end{document}</tex-math></inline-formula>-stochastic threshold method again to obtain the existence of positive periodic solution. Besides, the related competition exclusion and moment estimate of species are shown. Finally, some numerical simulations are provided to substantiate our analytical results.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI