Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model

数据预处理 计算机科学 人工神经网络 希尔伯特-黄变换 数据挖掘 人工智能 机器学习 Boosting(机器学习) 滤波器(信号处理) 计算机视觉
作者
Yituo Zhang,Chaolin Li,Yiqi Jiang,Lu Sun,Ruobin Zhao,Kefen Yan,Wenhui Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:354: 131724-131724 被引量:182
标识
DOI:10.1016/j.jclepro.2022.131724
摘要

Quickly and accurately grasping the water quality in the drainage network is essential for the management and early warning of the urban water environment. Modeling-based detection methods enable fast and reagent-free water quality detection based on inexpensive multi-source data, which is cleaner and more sustainable than traditional chemical-reaction-based detection methods. But the unsatisfactory accuracy limits their practical application. This study proposes an integrated EMD-LSTM model that combines the data preprocessing module centered on empirical mode decomposition (EMD) and the long short-term memory (LSTM) neural network prediction module to improve the accuracy of the modeling-based detection methods. In the integrated EMD-LSTM model, EMD allows retaining outliers and utilizing data on non-aligned moments, which contributes to capturing data patterns, while powerful nonlinear mapping and learning ability of LSTM neural network enables the time series prediction of water quality. As a result, the EMD-LSTM has achieved the highest R2 values (0.961, 0.9384, 0.9575, 0.9441, 0.9502) and the lowest RMSE values (8.3112, 6.7795, 0.2691, 2.6239, 1.4894) in the prediction of COD, BOD5, TP, TN, NH3–N when compared with the integrated models formed by combining other preprocessing procedures (i.e., traditional operation, short-time Fourier transform) and data-driven forecasting algorithms (i.e., partial least squares regression, gradient boosting regression, deep neural network). This study provides enlightenment for improving the accuracy of modeling-based detection methods, which has driven the development of water quality detection technology towards cleaner and more sustainable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助哇咔咔采纳,获得10
刚刚
Yam发布了新的文献求助10
刚刚
现实的千万完成签到,获得积分10
1秒前
1412完成签到,获得积分10
1秒前
1秒前
1秒前
德德发布了新的文献求助10
2秒前
DCH发布了新的文献求助10
2秒前
卿卿发布了新的文献求助10
3秒前
气味发布了新的文献求助10
4秒前
Zhangll发布了新的文献求助10
4秒前
苏安莲完成签到,获得积分10
4秒前
wure10完成签到 ,获得积分10
4秒前
小蘑菇应助NeoWu采纳,获得10
5秒前
桐桐应助西贝采纳,获得10
5秒前
zhx发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
默问应助姚老表采纳,获得50
7秒前
xiaohui完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
猫猫博士完成签到 ,获得积分10
7秒前
大模型应助嘟嘟嘟嘟嘟采纳,获得10
8秒前
自由的藏鸟完成签到,获得积分10
9秒前
小马甲应助Yam采纳,获得10
9秒前
科研小呆瓜完成签到,获得积分10
9秒前
卿卿完成签到,获得积分10
9秒前
10秒前
10秒前
所所应助自信的涛采纳,获得10
11秒前
王旭发布了新的文献求助10
12秒前
科研通AI6.1应助nicolight采纳,获得10
13秒前
111完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769099
求助须知:如何正确求助?哪些是违规求助? 5578176
关于积分的说明 15420439
捐赠科研通 4902827
什么是DOI,文献DOI怎么找? 2637955
邀请新用户注册赠送积分活动 1585825
关于科研通互助平台的介绍 1540963