Designing van-based mobile battery swapping and rebalancing services for dockless ebike-sharing systems based on the dueling double deep Q-network

计算机科学 马尔可夫决策过程 补贴 利润(经济学) 过程(计算) 人气 运筹学 马尔可夫过程 工程类 操作系统 统计 微观经济学 经济 心理学 社会心理学 市场经济 数学
作者
Meng Xu,Yining Di,Zheng Zhu,Hai Yang,Xiqun Chen
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:138: 103620-103620 被引量:1
标识
DOI:10.1016/j.trc.2022.103620
摘要

• We propose a van-based services for battery swapping and rebalancing in ebike-sharing systems. • We utilize the Markov decision process to depict the ebike-sharing system with a platform player and a van driver player. • We apply the dueling double deep Q-network method which is an advanced reinforcement learning approach. • We numerically show that the proposed strategy could help increase the platform's profit and van drivers' earnings. Ebike-sharing (electric bicycle-sharing) systems are gaining popularity as ebikes provide riders with transportation convenience when people have limited accessibility to other travel modes. Compared to traditional bike-sharing systems, ebike-sharing systems are more complicated as the platform needs to handle battery recharging issues as well as the imbalance between supply and demand. However, previous studies have not discussed how to address the two issues effectively. In this paper, we consider a dockless ebike-sharing system with removable ebike batteries and introduce vans to such a system to solve recharging and rebalancing problems simultaneously. In other words, during the operational horizon, van drivers can choose among rebalancing tasks, battery swapping tasks, and half-rebalancing-half-swapping tasks. This paper utilizes the Markov decision process to depict the highly dynamic ebike-sharing system with a platform player (agent) and a representative van driver player (agent). In such a system, van drivers choose their tasks to maximize their income, and the platform allocates spatiotemporal subsidies with predefined subsidy amounts to incentivize van drivers and optimize the profit. To efficiently solve the dynamic optimization problem with mixed agents, we apply the dueling double deep Q-network method which is an advanced reinforcement learning approach. We conduct numerical studies based on a real-world dataset in New York City, and evaluate the performance of the proposed operational services under different schemes. Our results show that the proposed van-based services for battery swapping and rebalancing could help increase the platform's profit and van drivers' earnings, and improve system performance. Additionally, it is also proved that the platform, van drivers, and the overall ebike-sharing system all benefit from spatiotemporal subsidies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天涯倦客发布了新的文献求助10
3秒前
彪行天下完成签到,获得积分10
4秒前
默默毛豆完成签到,获得积分10
6秒前
13秒前
饱满语风完成签到 ,获得积分10
14秒前
华仔应助巴恩斯图书馆采纳,获得10
14秒前
liguanyu1078完成签到,获得积分10
16秒前
gangxiaxuan完成签到,获得积分10
18秒前
天涯倦客完成签到,获得积分10
24秒前
医路前行完成签到 ,获得积分10
25秒前
stiger完成签到,获得积分10
26秒前
喜看财经完成签到,获得积分10
29秒前
鲸鱼打滚完成签到 ,获得积分10
31秒前
喜看财经发布了新的文献求助10
33秒前
cdercder应助科研通管家采纳,获得20
38秒前
昏睡的蟠桃应助科研通管家采纳,获得200
38秒前
谨慎鹏涛完成签到 ,获得积分10
42秒前
shuangfeng1853完成签到 ,获得积分10
42秒前
充电宝应助xiangrikui采纳,获得10
45秒前
xiangrikui完成签到,获得积分0
54秒前
56秒前
嘟嘟完成签到 ,获得积分10
59秒前
xiangrikui发布了新的文献求助10
59秒前
Tibbar完成签到 ,获得积分10
1分钟前
ZHANG完成签到 ,获得积分10
1分钟前
1分钟前
lql完成签到 ,获得积分10
1分钟前
如沐春风发布了新的文献求助10
1分钟前
科研通AI5应助yiyi采纳,获得10
1分钟前
最美夕阳红完成签到,获得积分10
1分钟前
nini完成签到,获得积分10
1分钟前
科研狗完成签到 ,获得积分0
1分钟前
今我来思完成签到 ,获得积分10
1分钟前
香锅不要辣完成签到 ,获得积分10
1分钟前
1分钟前
碧蓝雁风完成签到 ,获得积分10
1分钟前
林结衣完成签到,获得积分10
1分钟前
刘国建郭菱香完成签到 ,获得积分10
1分钟前
XXXXX完成签到 ,获得积分10
1分钟前
licheng完成签到,获得积分10
1分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811747
求助须知:如何正确求助?哪些是违规求助? 3355995
关于积分的说明 10379115
捐赠科研通 3072963
什么是DOI,文献DOI怎么找? 1688145
邀请新用户注册赠送积分活动 811850
科研通“疑难数据库(出版商)”最低求助积分说明 766877