OsCOMT, encoding a caffeic acid O‐methyltransferase in melatonin biosynthesis, increases rice grain yield through dual regulation of leaf senescence and vascular development

生物 维管束 细胞分裂素 咖啡酸 褪黑素 光合作用 衰老 植物 抗氧化剂 生物化学 细胞生物学 生长素 基因 内分泌学
作者
Liexiang Huangfu,Rujia Chen,Yue Lu,Enying Zhang,Jun Miao,Zhihao Zuo,Yu Zhao,Minyan Zhu,Zihui Zhang,Pengcheng Li,Yang Xu,Youli Yao,Guohua Liang,Chenwu Xu,Yong Zhou,Zefeng Yang
出处
期刊:Plant Biotechnology Journal [Wiley]
卷期号:20 (6): 1122-1139 被引量:48
标识
DOI:10.1111/pbi.13794
摘要

Summary Melatonin, a natural phytohormone in plants, plays multiple critical roles in plant growth and stress responses. Although melatonin biosynthesis‐related genes have been suggested to possess diverse biological functions, their roles and functional mechanisms in regulating rice grain yield remain largely unexplored. Here, we uncovered the roles of a caffeic acid O ‐methyltransferase ( OsCOMT ) gene in mediating rice grain yield through dual regulation of leaf senescence and vascular development. In vitro and in vivo evidence revealed that OsCOMT is involved in melatonin biosynthesis. Transgenic assays suggested that OsCOMT significantly delays leaf senescence at the grain filling stage by inhibiting degradation of chlorophyll and chloroplast, which, in turn, improves photosynthesis efficiency. In addition, the number and size of vascular bundles in the culms and leaves were significantly increased in the OsCOMT ‐overexpressing plants, while decreased in the knockout plants, suggesting that OsCOMT plays a positive role in vascular development of rice. Further evidence indicated that OsCOMT ‐mediated vascular development might owe to the crosstalk between melatonin and cytokinin. More importantly, we found that OsCOMT is a positive regulator of grain yield, and overexpression of OsCOMT increase grain yield per plant even in a high‐yield variety background, suggesting that OsCOMT can be used as an important target for enhancing rice yield. Our findings shed novel insights into melatonin‐mediated leaf senescence and vascular development and provide a possible strategy for genetic improvement of rice grain yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MinQi完成签到,获得积分10
2秒前
2秒前
洪山老狗完成签到,获得积分10
3秒前
4秒前
慕容飞凤完成签到,获得积分10
5秒前
HQ完成签到,获得积分10
6秒前
康园发布了新的文献求助10
6秒前
geather完成签到,获得积分10
6秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
VDC应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
花雨落123完成签到,获得积分20
11秒前
lwl完成签到,获得积分10
14秒前
山丘完成签到,获得积分10
16秒前
小叶完成签到 ,获得积分10
18秒前
Yogita完成签到,获得积分10
19秒前
cdercder应助ryeong采纳,获得10
21秒前
飘文献完成签到,获得积分10
25秒前
忧伤的冰薇完成签到 ,获得积分10
29秒前
zehua309完成签到,获得积分10
32秒前
jason完成签到,获得积分10
37秒前
时光静默如水完成签到,获得积分20
38秒前
xxxHolic41完成签到,获得积分10
40秒前
科研通AI5应助雨过天晴采纳,获得10
44秒前
tengyi完成签到 ,获得积分10
45秒前
与桉发布了新的文献求助10
48秒前
李健的小迷弟应助sisi采纳,获得10
49秒前
一颗西柚完成签到 ,获得积分10
51秒前
留胡子的小虾米完成签到,获得积分10
52秒前
胡图完成签到,获得积分10
52秒前
研友_8Y2DXL完成签到,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776116
求助须知:如何正确求助?哪些是违规求助? 3321700
关于积分的说明 10206716
捐赠科研通 3036792
什么是DOI,文献DOI怎么找? 1666450
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841