Unsupervised deep hashing through learning soft pseudo label for remote sensing image retrieval

计算机科学 人工智能 散列函数 图像检索 模式识别(心理学) 相似性(几何) 聚类分析 图像(数学) 计算机安全
作者
Yuxi Sun,Chuyao Luo,Xutao Li,Shanshan Feng,Bowen Zhang,Jian Kang,Kuai Dai
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:239: 107807-107807 被引量:28
标识
DOI:10.1016/j.knosys.2021.107807
摘要

Unsupervised hashing is an important approach for large-scale content-based remote sensing (RS) image retrieval. Existing unsupervised hashing methods usually utilize data clustering to generate pseudo labels as supervised signals. In the RS domain, images of each class cannot be accurately grouped into individual clusters because image features are not well characterized by the pre-trained models learned on a nature image dataset. As a result, to preserve the similarity of images sharing at least one class, intra-cluster and inter-cluster similarities need to be carefully learned. However, existing pseudo-labels are hard pseudo-labels represented by scalar values, which cannot well reflect the semantic distance between inter-cluster images or the semantic distance between intra-cluster images. To address these problems, this paper proposes a soft-pseudo-label-based unsupervised deep hashing method for content-based RS image retrieval, called SPL-UDH. Soft pseudo-labels can accurately describe the global similarity between inter-cluster images by binarized vectors. Specifically, we design a deep auto-encoder network to learn soft pseudo-labels automatically and meanwhile to generate a local similarity matrix representing the proximity between intra-cluster images. Based on soft pseudo-labels and local similarity matrix, we propose a deep hashing network to simultaneously learn the inter-cluster similarity and the intra-cluster similarity between RS images. Moreover, we design a new objective function based on Bayesian theory so that the deep hashing network can be trained by jointly learning the soft pseudo-labels and the local similarity matrix. Extensive experiments on public RS image retrieval datasets demonstrate that SPL-UDH outperforms various state-of-the-art unsupervised hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力搞科研完成签到,获得积分10
6秒前
小马甲应助joysa采纳,获得10
6秒前
jin完成签到,获得积分10
7秒前
zsg完成签到,获得积分10
7秒前
7秒前
十二发布了新的文献求助50
10秒前
11秒前
14秒前
冰海完成签到 ,获得积分10
15秒前
科研通AI5应助nenoaowu采纳,获得30
20秒前
玖月发布了新的文献求助10
21秒前
秋秋完成签到,获得积分10
23秒前
JamesPei应助熬夜猫采纳,获得10
24秒前
搜集达人应助夏沐采纳,获得10
26秒前
内向南风完成签到 ,获得积分10
27秒前
斯文败类应助听风飘逸采纳,获得10
28秒前
29秒前
科研通AI2S应助科研通管家采纳,获得30
30秒前
酷波er应助科研通管家采纳,获得10
30秒前
乐乐应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
ding应助科研通管家采纳,获得10
30秒前
ding应助科研通管家采纳,获得10
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得30
30秒前
30秒前
Akim应助秋秋采纳,获得10
31秒前
JamesPei应助清新的音响采纳,获得10
33秒前
33秒前
熬夜猫发布了新的文献求助10
34秒前
DDJoy完成签到,获得积分10
36秒前
44秒前
小虎完成签到,获得积分10
45秒前
lihongjie完成签到,获得积分20
48秒前
50秒前
50秒前
54秒前
54秒前
Jasper应助清新的音响采纳,获得10
55秒前
内向的乾发布了新的文献求助10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777368
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211483
捐赠科研通 3038087
什么是DOI,文献DOI怎么找? 1667077
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758103