Identification and analysis of exosome-associated signatures in pediatric sepsis by integrated bioinformatics analysis and machine learning

计算生物学 鉴定(生物学) 聚类分析 机器学习 免疫系统 生物信息学 基因 人工智能 发病机制 生物 机制(生物学) 微阵列分析技术 免疫失调 基因表达谱 基因表达 无监督学习 败血症 计算机科学 小桶 生物网络 微阵列 共识聚类 系统生物学 医学 功能(生物学) DNA微阵列 基因调控网络 统计分类 基因表达调控
作者
Junming Huang,Lichuan Lai,Jinji Chen,Xiaotao Su
出处
期刊:PeerJ [PeerJ]
卷期号:14: e20555-e20555
标识
DOI:10.7717/peerj.20555
摘要

Background Pediatric sepsis (PS) is a critical condition characterized by life-threatening organ dysfunction and immune dysregulation, including exosome-mediated immune modulation, often linked to infections. Investigating the role of exosome-related genes (ERGs) in the pathogenesis of PS is essential for identifying significant diagnostic and therapeutic targets. Methods Four datasets, namely GSE66099 (training set) and GSE13904, GSE26378, and GSE26440 (validation sets), were retrieved from the Gene Expression Omnibus (GEO). The differential expression of 56 ERGs was analyzed, followed by consensus clustering to identify distinct exosome-related patterns in PS. Weighted gene co-expression network analysis (WGCNA) was utilized to identify PS-related genes (SRGs). Additionally, the immune microenvironment was assessed, and diagnostic models were developed employing specific machine learning algorithms. Results The differential expression analysis identified 21 ERGs that exhibited significant alterations in PS. Consensus clustering revealed two distinct subtypes of PS based on the expression pattern of ERGs. WGCNA identified several hub genes involved in exosome function and PS, with immune-related pathways, including phagocytosis and NF-κB signaling, showing significant enrichment. These genes were leveraged to construct machine learning models, which demonstrated a high diagnostic accuracy, with an area under the curve (AUC) > 0.995. The analysis identified CD177 , GYG1 , IRAK3 , MCEMP1 , and TLR5 as key biomarkers. Furthermore, external validation confirmed the superior performance of the constructed model. Conclusion This study elucidated the role of ERGs in PS, and highlights the significance of immune dysregulation in the pathogenesis of the disease. The developed diagnostic models represent promising tools for the early detection and prognosis prognostic of PS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助宁雨蕾采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
奋斗成风发布了新的文献求助20
2秒前
LINjf完成签到,获得积分10
2秒前
AHR发布了新的文献求助10
2秒前
小二郎应助hi采纳,获得10
3秒前
huajanve发布了新的文献求助10
3秒前
3秒前
爆米花应助黑大帅采纳,获得10
4秒前
4秒前
5秒前
Sean完成签到 ,获得积分10
6秒前
hxx完成签到,获得积分10
6秒前
6秒前
check发布了新的文献求助10
6秒前
ylyla完成签到 ,获得积分10
6秒前
7秒前
ucas应助席冥采纳,获得20
8秒前
9秒前
single完成签到,获得积分10
9秒前
Klenows发布了新的文献求助10
9秒前
yulong发布了新的文献求助10
11秒前
lily完成签到,获得积分10
12秒前
小城123完成签到,获得积分20
12秒前
浮游应助LaTeXer采纳,获得10
15秒前
15秒前
16秒前
16秒前
小蘑菇应助yulong采纳,获得10
16秒前
上官若男应助huajanve采纳,获得30
17秒前
Peggy发布了新的文献求助10
17秒前
17秒前
宁雨蕾完成签到,获得积分10
17秒前
橘涂初九发布了新的文献求助10
20秒前
wyitong2024发布了新的文献求助30
20秒前
matcha发布了新的文献求助10
21秒前
科研通AI6应助无辜丹翠采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
钟昊发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626037
求助须知:如何正确求助?哪些是违规求助? 4711790
关于积分的说明 14956974
捐赠科研通 4780061
什么是DOI,文献DOI怎么找? 2554016
邀请新用户注册赠送积分活动 1515892
关于科研通互助平台的介绍 1476120