前列腺癌
纳米载体
LNCaP公司
纳米医学
二甲双胍
医学
药品
药理学
肿瘤科
药物输送
细胞毒性
Zeta电位
药代动力学
癌症治疗
联合疗法
临床试验
癌症研究
药学
合理设计
前列腺
内科学
靶向给药
毒性
生物利用度
抗癌药
癌细胞
多西紫杉醇
作者
Babbiker Mohammed Taher Gorish,Waha Ismail Yahia Abdelmula,Dang Wenqian,Bai Yue,LU Yahu,Daochen Zhu
出处
期刊:Small
[Wiley]
日期:2026-02-02
卷期号:: e13085-e13085
标识
DOI:10.1002/smll.202513085
摘要
ABSTRACT Prostate cancer therapy is limited by systemic toxicity and inefficient tumor‐selective delivery. Here we report a multi‐stimuli‐responsive nanocomposite, Lignin@GO@ZIF‐8, that co‐delivers 5‐Fluorouracil (5‐FU) and metformin and couples pH‐ and redox‐responsive release. We integrate machine learning (ML) to guide formulation: trained on 500 formulation property pairs with cross‐validation and a held‐out test set, XGBoost achieved the highest predictive performance ( R 2 = 0.86–0.89) for drug loading, encapsulation efficiency, and release rate, with influential features including the ZIF‐8 fraction, graphene oxide (GO) content, particle size, zeta potential, pH, and glutathione concentration. ML‐optimized Lignin@GO@ZIF‐8 exhibited improved loading and tunable release relative to pre‐optimized controls. In vitro, the platform sustained drug release and produced potent anticancer activity, reducing LNCaP viability to 18 ± 3% at 72 h, while showing low cytotoxicity toward non‐malignant cells. These results support a data‐driven framework for rational design of multifunctional, stimuli‐responsive nanomedicine platforms and may help inform future translational strategies for prostate cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI