What large language models know and what people think they know

感知 计算机科学 校准 自信 心理学 认知心理学 人工智能 社会心理学 统计 数学 神经科学
作者
Mark Steyvers,Heliodoro Tejeda,Aakriti Kumar,Catarina Belém,Sheer Karny,Xinyue Hu,L. Mayer,Padhraic Smyth
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
被引量:2
标识
DOI:10.1038/s42256-024-00976-7
摘要

Abstract As artificial intelligence systems, particularly large language models (LLMs), become increasingly integrated into decision-making processes, the ability to trust their outputs is crucial. To earn human trust, LLMs must be well calibrated such that they can accurately assess and communicate the likelihood of their predictions being correct. Whereas recent work has focused on LLMs’ internal confidence, less is understood about how effectively they convey uncertainty to users. Here we explore the calibration gap, which refers to the difference between human confidence in LLM-generated answers and the models’ actual confidence, and the discrimination gap, which reflects how well humans and models can distinguish between correct and incorrect answers. Our experiments with multiple-choice and short-answer questions reveal that users tend to overestimate the accuracy of LLM responses when provided with default explanations. Moreover, longer explanations increased user confidence, even when the extra length did not improve answer accuracy. By adjusting LLM explanations to better reflect the models’ internal confidence, both the calibration gap and the discrimination gap narrowed, significantly improving user perception of LLM accuracy. These findings underscore the importance of accurate uncertainty communication and highlight the effect of explanation length in influencing user trust in artificial-intelligence-assisted decision-making environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHR123456完成签到,获得积分20
刚刚
罗健完成签到 ,获得积分10
刚刚
山野完成签到 ,获得积分10
1秒前
楮树完成签到,获得积分10
2秒前
魔幻的小蘑菇完成签到 ,获得积分10
2秒前
mrwang完成签到 ,获得积分0
5秒前
卷卷完成签到,获得积分10
5秒前
6秒前
PHY发布了新的文献求助10
6秒前
可爱的函函应助zzz采纳,获得10
9秒前
9秒前
吃糖完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
李健的小迷弟应助星海采纳,获得10
12秒前
顾矜应助juphen2采纳,获得10
13秒前
林夕君发布了新的文献求助10
14秒前
excellent_shit完成签到,获得积分10
15秒前
15秒前
不懈奋进应助科研通管家采纳,获得30
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
黑白应助科研通管家采纳,获得50
15秒前
16秒前
16秒前
17秒前
泡芙发布了新的文献求助10
18秒前
了了发布了新的文献求助10
20秒前
阔达的太阳完成签到,获得积分10
20秒前
21秒前
tang发布了新的文献求助10
21秒前
23秒前
juphen2发布了新的文献求助10
26秒前
26秒前
了了完成签到,获得积分10
27秒前
满意项链发布了新的文献求助10
27秒前
zzzzz完成签到 ,获得积分10
28秒前
研友_8yVV0L完成签到 ,获得积分10
28秒前
Miss完成签到,获得积分10
30秒前
漂亮的雨琴完成签到,获得积分10
30秒前
30秒前
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866213
求助须知:如何正确求助?哪些是违规求助? 3408806
关于积分的说明 10659945
捐赠科研通 3132964
什么是DOI,文献DOI怎么找? 1727868
邀请新用户注册赠送积分活动 832501
科研通“疑难数据库(出版商)”最低求助积分说明 780298