Multiple high-Q Brillouin zone folding guided mode resonances in all-dielectric metasurfaces

布里渊区 电介质 材料科学 折叠(DSP实现) 模式(计算机接口) 光电子学 光学 凝聚态物理 物理 计算机科学 电气工程 工程类 操作系统
作者
Ying Zhang,Lulu Wang,Yiyuan Wang,Haoxuan He,Hong Duan,Chenggui Gao,Shaojun You,Mingquan Qiu,Chaobiao Zhou
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:125 (24) 被引量:1
标识
DOI:10.1063/5.0238353
摘要

High quality (Q) factors guided mode resonances (GMRs) are important platform for enhancing light–matter interactions. Conventional GMRs are excited by embedding periodic nanoholes in planar thin films, where the size of the holes determines the Q-factors. These control methods are relatively limited. In this work, we study multiple high-Q band folding GMRs in the near-infrared region and explore their sensing characteristics. By constructing a nanohole dimer metasurface, five band folding ultrahigh-Q GMRs are formed and corresponding high-Q GMRs are obtained by changing the size of one nanohole to break the mirror symmetry of the structure and thus manipulate the energy radiation of the modes. These resonance modes exhibit greater stability in momentum space, and their excitation is not strictly dependent on perpendicularly incident light, which facilitates experimental testing. We fabricate a series of samples to confirm these high-Q GMRs, with experimental Q-factors reaching 5.0 × 103. Next, we investigate the sensing characteristics of these GMRs, and due to the significant differences in their field distributions, TM0 mode has the best sensing performance among the five modes. Here, by spin-coating photoresists on the surface of the devices, we examine their sensing properties. It is proved that the specificity of the eigenfield localization of TM0 mode results in an excellent performance of the sensing properties of this mode, with an experimental sensitivity and figure of merit of 124 nm/RIU and 105, respectively. This work provides a route for the realization of metasurfaces with high Q-factors, which has potential applications in nanophotonics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu发布了新的文献求助10
刚刚
华仔应助郭喆采纳,获得10
刚刚
科研通AI6应助yu采纳,获得10
1秒前
小乔要努力变强完成签到,获得积分10
1秒前
you完成签到,获得积分10
1秒前
香蕉觅云应助water60采纳,获得10
1秒前
冰冰Y哦呀发布了新的文献求助20
2秒前
量子星尘发布了新的文献求助10
2秒前
gyy完成签到 ,获得积分10
3秒前
3秒前
4秒前
可爱的函函应助在不在采纳,获得10
4秒前
丘比特应助星空_采纳,获得30
4秒前
SSQY完成签到 ,获得积分10
5秒前
5秒前
5秒前
赘婿应助淡然冬灵采纳,获得10
6秒前
风华正茂完成签到 ,获得积分10
8秒前
李健应助菜菜采纳,获得30
8秒前
9秒前
帅气老张发布了新的文献求助10
10秒前
11秒前
11秒前
高翠翠关注了科研通微信公众号
12秒前
至幸发布了新的文献求助10
12秒前
乐乐应助负责的方盒采纳,获得10
12秒前
xy完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助20
13秒前
13秒前
13秒前
田様应助kelvin采纳,获得10
14秒前
w1m关注了科研通微信公众号
15秒前
郭喆发布了新的文献求助10
15秒前
子璇发布了新的文献求助10
15秒前
科研通AI2S应助czz2007采纳,获得10
16秒前
刘瀚臻发布了新的文献求助10
17秒前
mmmmm完成签到,获得积分10
18秒前
正直静曼发布了新的文献求助10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
无极微光应助科研通管家采纳,获得20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087017
求助须知:如何正确求助?哪些是违规求助? 4302540
关于积分的说明 13408011
捐赠科研通 4127749
什么是DOI,文献DOI怎么找? 2260458
邀请新用户注册赠送积分活动 1264739
关于科研通互助平台的介绍 1198892