Automated Assessment of Simulated Laparoscopic Surgical Performance using 3DCNN

计算机科学 生物医学工程 模拟 医学
作者
David Power,Ihsan Ullah
标识
DOI:10.1109/embc53108.2024.10782160
摘要

Artificial intelligence & Computer vision have the potential to improve surgical training, especially for minimally invasive surgery by analyzing intraoperative and simulation videos for training or performance improvement purposes. Among these, techniques based on deep learning have rapidly improved, from recognizing objects, instruments, and gestures, to remembering past surgical steps and phases of surgery. However, data scarcity is a problem, particularly in surgery, where complex datasets and human annotation are expensive and time-consuming, and in most cases rely on direct intervention of clinical expertise. Laproscopic surgical assessment of performance traditionally relies on direct observation or video analysis by human experts, a costly and time-consuming undertaking. A newly collected simulated laparoscopic surgical dataset (LSPD) is presented that will initiate the research in automating this problem and avoiding manual expert assessments. LSPD statistical analyses is given to show similarity and differences between different expertise level (on Stack, Bands, and Tower Skills). Finally, a convolutional neural network is used to predict the experience level of the surgeons, where the model achieved good distinguishing results. The proposed work offers the potential to automate performance assessment and self-learn important features that can discriminate between the performance of novice, trainee, and expert levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yael发布了新的文献求助10
1秒前
ljy完成签到 ,获得积分10
4秒前
4秒前
7秒前
酷波er应助刻苦的旺仔采纳,获得10
7秒前
7秒前
9秒前
医学僧发布了新的文献求助100
10秒前
lamica完成签到,获得积分10
11秒前
冷静的半梦完成签到,获得积分10
11秒前
evlouu发布了新的文献求助10
12秒前
浮游应助冷静的半梦采纳,获得10
15秒前
15秒前
斯文败类应助科研通管家采纳,获得10
16秒前
小毛毛想睡觉完成签到 ,获得积分10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
故意的寒安完成签到,获得积分10
17秒前
赘婿应助包容一刀采纳,获得10
17秒前
18秒前
深情安青应助医学僧采纳,获得50
22秒前
22秒前
26秒前
浩淼发布了新的文献求助10
26秒前
27秒前
28秒前
evlouu完成签到,获得积分20
30秒前
31秒前
妖哥完成签到,获得积分10
32秒前
yyy发布了新的文献求助10
36秒前
刻苦的旺仔完成签到,获得积分10
37秒前
38秒前
39秒前
42秒前
直率无春完成签到,获得积分10
42秒前
42秒前
从容的小松鼠完成签到,获得积分10
42秒前
43秒前
右旋芬氟拉明完成签到,获得积分10
45秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4803768
求助须知:如何正确求助?哪些是违规求助? 4120701
关于积分的说明 12749212
捐赠科研通 3853526
什么是DOI,文献DOI怎么找? 2122291
邀请新用户注册赠送积分活动 1144361
关于科研通互助平台的介绍 1035252