Prototype Matching Learning for Incomplete Multi-View Clustering

计算机科学 聚类分析 人工智能 匹配(统计) 模式识别(心理学) 数学 统计
作者
Honglin Yuan,Yuan Sun,Fei Zhou,Songbai Zhu,Shihua Yuan,Xiaojian You,Zhenwen Ren
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 828-841 被引量:22
标识
DOI:10.1109/tip.2025.3529378
摘要

As information acquisition diversifies, data is acquired and stored in increasing modalities. However, sensor failures or equipment issues can lead to partial data loss in certain views, resulting in incomplete multi-view clustering (IMVC) problems. Although some prototype-based IMVC methods have achieved satisfactory performance, almost all of these methods implicitly assume that the cross-view prototypes are aligned. However, during the generation or selection of prototypes, different networks could produce different prototypes, thereby leading to potential misalignment of prototypes across views, i.e., prototype-unaligned problem (PUP). The presence of PUP could lead to overfitting the model. Additionally, when recovering the missing data, there is uncertainty in data quality under different missing rates, which could lead to the performance instability problem (PIP). To address these issues, we propose Prototype Matching Learning for Incomplete Multi-view Clustering (PMIMC). Specifically, PMIMC leverages relational consistency learning to mitigate the heterogeneity of multi-view data. Subsequently, we design a robust prototype contrastive learning loss for the generated prototypes to reduce the effects of PUP. Finally, we propose a prototype-based imputation strategy, that aims to alleviate the instability of imputation under high missing rates. Extensive experiments demonstrate that PMIMC outperforms 13 state-of-the-art methods in terms of clustering performance and robustness. The code is available at: https: //github.com/hl-yuan/PMIMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33发布了新的文献求助10
刚刚
刚刚
元元完成签到,获得积分10
刚刚
刚刚
刚刚
子合发布了新的文献求助10
1秒前
林学聪完成签到,获得积分10
1秒前
cyrong发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
摸鱼武陵人完成签到,获得积分10
1秒前
honey发布了新的文献求助10
4秒前
nuomi发布了新的文献求助10
4秒前
不劳而获完成签到 ,获得积分10
4秒前
catherine发布了新的文献求助10
4秒前
Wu发布了新的文献求助10
5秒前
苹果初阳发布了新的文献求助20
5秒前
5秒前
5秒前
枯蚀完成签到,获得积分10
5秒前
6秒前
cwkcwk123完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
动次打次完成签到,获得积分20
6秒前
6秒前
专注的问寒举报不倦求助涉嫌违规
7秒前
飘逸的虔完成签到,获得积分10
7秒前
beili完成签到,获得积分10
8秒前
8秒前
9秒前
JIA完成签到,获得积分10
9秒前
vv完成签到,获得积分10
9秒前
nihao发布了新的文献求助10
9秒前
闵祥婷发布了新的文献求助10
10秒前
风兮雨发布了新的文献求助10
10秒前
LuckyO_o关注了科研通微信公众号
10秒前
11秒前
JamesPei应助朴素的天蓝采纳,获得10
12秒前
12秒前
guojingjing发布了新的文献求助10
13秒前
完美世界应助HZH采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167