Machine learning for the diagnosis accuracy of bipolar disorder: a systematic review and meta-analysis

双相情感障碍 背景(考古学) 荟萃分析 机器学习 系统回顾 人工智能 医学 心理学 梅德林 精神科 心情 内科学 计算机科学 法学 古生物学 生物 政治学
作者
Pan Yi,Pushi Wang,Bowen Xue,Yanbin Liu,Xinhua Shen,Shiliang Wang,Xing Wang,Pan Yi,Pushi Wang,Bowen Xue,Yanbin Liu,Xinhua Shen,Shiliang Wang,Xing Wang
出处
期刊:Frontiers in Psychiatry [Frontiers Media]
卷期号:15: 1515549-1515549 被引量:3
标识
DOI:10.3389/fpsyt.2024.1515549
摘要

Background Diagnosing bipolar disorder poses a challenge in clinical practice and demands a substantial time investment. With the growing utilization of artificial intelligence in mental health, researchers are endeavoring to create AI-based diagnostic models. In this context, some researchers have sought to develop machine learning models for bipolar disorder diagnosis. Nevertheless, the accuracy of these diagnoses remains a subject of controversy. Consequently, we conducted this systematic review to comprehensively assess the diagnostic value of machine learning in the context of bipolar disorder. Methods We searched PubMed, Embase, Cochrane, and Web of Science, with the search ending on April 1, 2023. QUADAS-2 was applied to assess the quality of the literature included. In addition, we employed a bivariate mixed-effects model for the meta-analysis. Results 18 studies were included, covering 3152 participants, including 1858 cases of bipolar disorder. 28 machine learning models were encompassed. Sensitivity and specificity in discriminating between bipolar disorder and normal individuals were 0.88 (9.5% CI: 0.74~0.95) and 0.89 (95% CI: 0.73~0.96) respectively, and the SROC curve was 0.94(95% CI: 0.92~0.96). The sensitivity and specificity for distinguishing between bipolar disorder and depression were 0.84 (95%CI: 0.80~0.87) and 0.82 (95%CI: 0.75~0.88) respectively. The SROC curve was 0.89 (95%CI: 0.86~0.91). Conclusions Machine learning methods can be employed for discriminating and diagnosing bipolar disorder. However, in current research, they are predominantly utilized for binary classification tasks, limiting their progress in clinical practice. Therefore, in future studies, we anticipate the development of more multi-class classification tasks to enhance the clinical applicability of these methods. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023427290 , identifier CRD42023427290.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuda完成签到,获得积分10
刚刚
星流xx完成签到 ,获得积分10
1秒前
Mae完成签到 ,获得积分10
1秒前
bigpluto完成签到,获得积分0
1秒前
月月小光完成签到,获得积分10
1秒前
内向的青荷完成签到,获得积分10
2秒前
沉默问夏完成签到 ,获得积分10
2秒前
安安完成签到 ,获得积分10
3秒前
星掠完成签到,获得积分10
3秒前
4秒前
小石头完成签到,获得积分10
4秒前
姜小时完成签到,获得积分10
4秒前
bbabb完成签到 ,获得积分10
5秒前
椿萱并茂完成签到,获得积分10
5秒前
yyyy完成签到,获得积分10
6秒前
比亚迪士尼在逃公主完成签到,获得积分10
6秒前
星星会开花完成签到,获得积分10
7秒前
Wenyu完成签到,获得积分10
7秒前
7秒前
打打应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
Dr_JennyZ应助科研通管家采纳,获得10
8秒前
8秒前
慕青应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
8秒前
凪白完成签到,获得积分10
9秒前
zhou完成签到,获得积分10
10秒前
10秒前
10秒前
开心的西瓜完成签到,获得积分10
10秒前
可爱的函函应助星掠采纳,获得10
11秒前
SOL完成签到,获得积分10
11秒前
123发布了新的文献求助10
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118440
求助须知:如何正确求助?哪些是违规求助? 4324348
关于积分的说明 13471847
捐赠科研通 4157359
什么是DOI,文献DOI怎么找? 2278392
邀请新用户注册赠送积分活动 1280168
关于科研通互助平台的介绍 1218879