亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer

胰腺癌 医学 胰腺 体积热力学 放射科 分割 图像分割 基本事实 癌症 内科学 核医学 人工智能 计算机科学 物理 量子力学
作者
Ehwa Yang,Jae‐Hun Kim,Ji Hye Min,Woo Kyoung Jeong,Jeong Ah Hwang,Jeong Hyun Lee,Jaeseung Shin,Honsoul Kim,Seol Eui Lee,Sun‐Young Baek
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (7): 2784-2794 被引量:5
标识
DOI:10.1016/j.acra.2024.01.004
摘要

Rationale and Objectives To develop and validate a deep learning (DL)-based method for pancreas segmentation on CT and automatic measurement of pancreatic volume in pancreatic cancer. Materials and Methods This retrospective study used 3D nnU-net architecture for fully automated pancreatic segmentation in patients with pancreatic cancer. The study used 851 portal venous phase CT images (499 pancreatic cancer and 352 normal pancreas). This dataset was divided into training (n = 506), internal validation (n = 126), and external test set (n = 219). For the external test set, the pancreas was manually segmented by two abdominal radiologists (R1 and R2) to obtain the ground truth. In addition, the consensus segmentation was obtained using Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm. Segmentation performance was assessed using the Dice similarity coefficient (DSC). Next, the pancreatic volumes determined by automatic segmentation were compared to those determined by manual segmentation by two radiologists. Results The DL-based model for pancreatic segmentation showed a mean DSC of 0.764 in the internal validation dataset and DSC of 0.807, 0.805, and 0.803 using R1, R2, and STAPLE as references in the external test dataset. The pancreas parenchymal volume measured by automatic and manual segmentations were similar (DL-based model: 65.5 ± 19.3 cm3 and STAPLE: 65.1 ± 21.4 cm3; p = 0.486). The pancreatic parenchymal volume difference between the DL-based model predictions and the manual segmentation by STAPLE was 0.5 cm3, with correlation coefficients of 0.88. Conclusion The DL-based model efficiently generates automatic segmentation of the pancreas and measures the pancreatic volume in patients with pancreatic cancer. To develop and validate a deep learning (DL)-based method for pancreas segmentation on CT and automatic measurement of pancreatic volume in pancreatic cancer. This retrospective study used 3D nnU-net architecture for fully automated pancreatic segmentation in patients with pancreatic cancer. The study used 851 portal venous phase CT images (499 pancreatic cancer and 352 normal pancreas). This dataset was divided into training (n = 506), internal validation (n = 126), and external test set (n = 219). For the external test set, the pancreas was manually segmented by two abdominal radiologists (R1 and R2) to obtain the ground truth. In addition, the consensus segmentation was obtained using Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm. Segmentation performance was assessed using the Dice similarity coefficient (DSC). Next, the pancreatic volumes determined by automatic segmentation were compared to those determined by manual segmentation by two radiologists. The DL-based model for pancreatic segmentation showed a mean DSC of 0.764 in the internal validation dataset and DSC of 0.807, 0.805, and 0.803 using R1, R2, and STAPLE as references in the external test dataset. The pancreas parenchymal volume measured by automatic and manual segmentations were similar (DL-based model: 65.5 ± 19.3 cm3 and STAPLE: 65.1 ± 21.4 cm3; p = 0.486). The pancreatic parenchymal volume difference between the DL-based model predictions and the manual segmentation by STAPLE was 0.5 cm3, with correlation coefficients of 0.88. The DL-based model efficiently generates automatic segmentation of the pancreas and measures the pancreatic volume in patients with pancreatic cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助恒温失效采纳,获得10
2秒前
4秒前
共享精神应助fheu采纳,获得10
5秒前
标致飞雪发布了新的文献求助20
7秒前
leslie发布了新的文献求助10
8秒前
领导范儿应助cnbhhhhh采纳,获得10
10秒前
11秒前
16秒前
fheu发布了新的文献求助10
20秒前
江姜酱先生完成签到,获得积分10
22秒前
康康完成签到,获得积分10
25秒前
雨雨雨雨雨文完成签到 ,获得积分10
31秒前
日光下完成签到 ,获得积分10
35秒前
许三问完成签到 ,获得积分0
35秒前
42秒前
qx发布了新的文献求助10
49秒前
50秒前
50秒前
直率奇迹完成签到 ,获得积分10
56秒前
朱朱猪猪完成签到,获得积分10
56秒前
Owen应助马喽打工仔采纳,获得30
57秒前
陈时懿完成签到,获得积分10
58秒前
1分钟前
qx完成签到,获得积分10
1分钟前
1分钟前
www完成签到 ,获得积分10
1分钟前
wanci应助陈时懿采纳,获得10
1分钟前
1分钟前
科研狗完成签到 ,获得积分10
1分钟前
1分钟前
完美世界应助p13508397190采纳,获得30
1分钟前
1分钟前
跳跃野狼发布了新的文献求助10
1分钟前
小宋爱睡觉完成签到 ,获得积分10
1分钟前
liyx发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小二郎应助芬芬采纳,获得10
1分钟前
阳光的玉米完成签到,获得积分10
1分钟前
cnbhhhhh发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681222
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702