A Thorough Review of Deep Learning in Autism Spectrum Disorder Detection: From Data to Diagnosis

自闭症谱系障碍 自闭症 心理学 深度学习 数据科学 人工智能 计算机科学 精神科
作者
Manjunath Ramanna Lamani,Julian Benadit Pernabas
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:17 (8) 被引量:1
标识
DOI:10.2174/0126662558284886240130154414
摘要

Background: Autism Spectrum Disorder (ASD) is a multifaceted neurodevelopmental condition with significant heterogeneity in its clinical presentation. Timely and precise identification of ASD is crucial for effective intervention and assistance. Recent advances in deep learning techniques have shown promise in enhancing the accuracy of ASD detection. Objective: This comprehensive review aims to provide an overview of various deep learning methods employed in detecting ASD, utilizing diverse neuroimaging modalities. We analyze a range of studies that use resting-state functional Magnetic Resonance Imaging (rsfMRI), structural MRI (sMRI), task-based fMRI (tfMRI), and electroencephalography (EEG). This paper aims to assess the effectiveness of these techniques based on criteria such as accuracy, sensitivity, specificity, and computational efficiency. Methods: We systematically review studies investigating ASD detection using deep learning across different neuroimaging modalities. These studies utilize various preprocessing tools, atlases, feature extraction techniques, and classification algorithms. The performance metrics of interest include accuracy, sensitivity, specificity, precision, F1-score, recall, and area under the curve (AUC). Results: The review covers a wide range of studies, each with its own dataset and methodology. Notable findings include a study employing rsfMRI data from ABIDE that achieved an accuracy of 80% using LeNet. Another study using rsfMRI data from ABIDE-II achieved an impressive accuracy of 95.4% with the ASGCN deep learning model. Studies utilizing different modalities, such as EEG and sMRI, also reported high accuracies ranging from 74% to 95%. Conclusion: Deep learning-based approaches for ASD detection have demonstrated significant potential across multiple neuroimaging modalities. These methods offer a more objective and data-driven approach to diagnosis, potentially reducing the subjectivity associated with clinical evaluations. However, challenges remain, including the need for larger and more diverse datasets, model interpretability, and clinical validation. The field of deep learning in ASD diagnosis continues to evolve, holding promise for early and accurate identification of individuals with ASD, which is crucial for timely intervention and support.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎明发布了新的文献求助10
刚刚
刚刚
2秒前
Orange应助Mark采纳,获得10
2秒前
orixero应助mccyjs采纳,获得200
2秒前
asdwind完成签到,获得积分10
2秒前
2874发布了新的文献求助10
3秒前
4秒前
落寞碧菡发布了新的文献求助10
5秒前
竹子发布了新的文献求助10
6秒前
上善若水发布了新的文献求助10
7秒前
gds完成签到,获得积分10
7秒前
zho发布了新的文献求助10
8秒前
9秒前
9秒前
11秒前
13秒前
estrella发布了新的文献求助10
13秒前
文静煜城发布了新的文献求助10
14秒前
benyu完成签到,获得积分10
16秒前
Akim应助上善若水采纳,获得10
17秒前
ao123发布了新的文献求助10
18秒前
阅遍SCI完成签到,获得积分10
18秒前
传奇3应助贾舒涵采纳,获得10
19秒前
19秒前
fff完成签到,获得积分20
19秒前
Ava应助2874采纳,获得10
23秒前
归尘发布了新的文献求助30
24秒前
24秒前
24秒前
绵绵球完成签到,获得积分0
25秒前
李爱国应助范先生采纳,获得30
25秒前
26秒前
tommmmmm15完成签到,获得积分10
26秒前
27秒前
27秒前
ao123完成签到,获得积分10
27秒前
29秒前
曼夭非夭完成签到,获得积分10
30秒前
Rita发布了新的文献求助10
30秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839851
求助须知:如何正确求助?哪些是违规求助? 3382113
关于积分的说明 10521335
捐赠科研通 3101547
什么是DOI,文献DOI怎么找? 1708111
邀请新用户注册赠送积分活动 822196
科研通“疑难数据库(出版商)”最低求助积分说明 773208